5.2. Взвешенная ранговая фильтрация
Дальнейшим развитием метода ранговой фильтрации является процедура взвешенной ранговой фильтрации (ВРФ). При выполнении ВРФ задаётся вектор ZM (вектор взвешивания). Каждый элемент указывает, сколько раз должен быть повторён элемент вектора, занимающий ту же позицию в окне сканирования (в неупорядоченном).Поэтому процедура ВРФ состоит из 2-х этапов [14, 16]:
“Взвешивание” элементов с помощью весовых коэффициентов;
Поиск элемента с рангом R.
При этом наиболее просто выполнение указанных процедур осуществляется разрядно-срезовыми алгоритмами. Разрядно-срезовый алгоритм взвешенной ранговой фильтрации аналогичен алгоритму ранговой фильтрации, за исключением операции модификации текущей суммы, которая принимает вид :
(5.5)
Таким образом, ранговая фильтрация может рассматриваться как частный случай взвешенной ранговой фильтрации, когда zmn =1 для всех значений m и n. Если zmn = {0; 1}, то выполняется процедура ранговой фильтрации с произвольной формой окна .
Согласно литературе, ВРФ приводит к меньшим искажениям мелких деталей изображений.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники