1.8. Двумерная апериодическая свертка и корреляция
Важное место среди операций линейной обработки сигналов занимает операция перемножения матриц одинаковой размерности. Такая операция имеет вид:
, (1.17)
гдеиисходные матрицы порядкаN, а - результирующая матрица того же порядка. Каждый элемент матрицыформируется в соответствии с выражением:
где - элементы исходных матриц.
На основе операций (1.17) и (1.18) выполняется вычисление функций двумерной апериодической свертки/корреляции исходного двумерного сигнала (изображения) с двумерным ядром. Подобное преобразование часто используется как для удаления шумов, так и для выделения мелких объектов.
Математически двумерная апериодическая свертка может быть описана следующим образом:
где - отсчеты результатов вычислений (отсчеты свертки),- отсчеты весовой функции окна (ядра свертки) размерностьюM x M отсчетов, причем N >> M. Очевидно, что размерность матрицы, описывающей двумерную свертку, равна (N + M-1) x (N + M -1) отсчетов. Поэтому матрица исходных данных также должна быть дополнена до указанного размера нулевыми элементами по краям кадра.
Отсчеты свертки формируются при перемещении окна вдоль строки исходного изображения. Для каждого положения окна формируется один отсчет свертки, после чего окно сдвигается на один элемент вдоль строки (т.е. на один столбец). Обработка начинается с элемента x исходного изображения. После прохождения i-й строки изображения (i= 1,N) окно смещается на одну строку вниз и возвращается к началу следующей (i + 1)-й строки изображения. По окончании обработки кадра изображения окно перемещается в исходное положение.
При вычислении свертки можно распараллелить вычисления по столбцам окна сканирования, выполняя параллельно вычисление произведений столбцов ядра свертки и столбцовтекущей полосы сканирования изображения. Поэтому для окончательного вычисления отсчета свертки достаточно сформировать сумму:
(1.20)
соответствующую отсчету свертки с номером j, расположенному в средней строке полосы шириной М.
Представляет интерес распараллеливание по разрядным срезам, поскольку в этом случае практически исключается операция умножения [16]. При разрядно-срезовой обработке данные должны быть представлены в формате с фиксированной точкой. Представим значение элемента изображения в следующем виде :
, (1.21)
где - q-ый разряд(q= 1,…, Q), (g=(1,Q)) где Q - разрядность данных.
С учетом этого процедура вычисления свертки принимает вид:
(1.22)
Таким образом, процедура двумерной апериодической свертки для одного положения окна сводится к M x N x Q операциям сложения и (Q-1) операциям сдвига. Умножение под знаком суммы сводится к операции вида :
при ипри.
Поэтому разрядно-срезовый алгоритм вычисления свертки или корреляции для одного положения окна может быть представлен в виде [16]:
начало;
для цикл:
для цикл:
для цикл:
если , то
иначе ;
;
конец цикла по ;
конец цикла по ;
;
конец цикла по ;
;
конец.
Физический смысл функций свертки и корреляции состоит в том, что они являются количественной мерой совпадения (сходства) двух последовательностей f(x) и g(x). При этом наиболее полно мера сходства может быть определена по функции корреляции, в связи с чем функция взаимокорреляции (или кросскорреляции) может быть использована для распознавания сигналов. Если распознаваемый сигнал f(t) точно соответствует эталонному сигналу g(t), то результирующий сигнал k(t) принимает значение:
k(t)=max при f(t) g(t),
что соответствует функции автокорреляции. Если сигналы отличаются, то k(t)max.
Кроме того, при обработке двумерных сигналов (изображений объектов) координаты максимума данной функции определяют центр тяжести исходного распознаваемого объекта, что позволяет определить и его местоположение (т.е. запеленговать объект). По этим причинам вычисление одномерной или двумерной корреляции лежит в основе целого ряда методов распознавания.
Таким образом, функции линейной апериодической свертки и корреляции полезны для распознавания сигналов заданной формы. На этом принципе работают корреляционные методы распознавания. Свертка определяется путем скольжения эталона по вектору исходного сигнала, и максимум функции будет тогда, когда исходный сигнал совпал с эталоном. Функция апериодической свертки, кроме того, оказывается полезной для удаления, например, низкочастотных помех.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники