Преобразование Лапласа
В теории автоматического управления широко используются методы операционного исчисления. Суть операционного исчисления заключается в том, что каждой рассматриваемой функции f(t), называемой оригиналом, ставится в соответствие по определенным законам некоторая другая функция F(p), называемая изображением. При этом математические операции над оригиналами заменяются математическими операциями над изображениями.
Законы соответствия между оригиналами и изображениями выбраны таким образом, чтобы математические операции над оригиналами заменялись бы более простыми математическими операциями над изображениями. При использовании преобразования Лапласа операции дифференцирования и интегрирования оригиналов сводятся к операциям умножения и деления изображений на независимую переменную.
В результате применения преобразования Лапласа к обыкновенному линейному дифференциальному уравнению ему в области изображений будет соответствовать линейное алгебраическое уравнение. Решение уравнения для изображений будет существенно проще, что упрощает исследование системы автоматического регулирования.
В преобразовании Лапласа устанавливается интегральная связь между изображением и оригиналом:
где произвольная комплексная величина, являющаяся аргументом для изображающей функции.
Оригиналом f(t) может быть функция действительного переменного, если она обладает следующими свойствами:
f(t) определена и дифференцируема на всей числовой прямой;
f(t)=0 при t<0;
существуют такие положительные величины M>0 и S0, что
при .
Для линейных обыкновенных дифференциальных уравнений, описывающих процессы в системах автоматического управления, перечисленные требования выполняются.
В преобразовании Лапласа оригинал обозначается строчной буквой, а изображение соответствующей ей прописной буквой. Применяется одно из следующих обозначений преобразования Лапласа:
, или .
Пример. Найдем изображения Лапласа для некоторых функций. Пусть f(t)=A=const, тогда
Другая функция f(t)=t
Аналогично вычисляются изображения других функций. Для наиболее распространенных функций их лапласовы изображения приводятся в справочных пособиях по математике и теории автоматического управления.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Гармоническая функция.
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- Безынерционное (усилительное) звено.
- Инерционное звено (апериодическое звено первого порядка).
- Колебательное звено.
- Интегрирующее звено.
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель
- Содержание