logo
Конспект лекций по ТАУ

Инерционное звено (апериодическое звено первого порядка).

Инерционное звено описывается дифференциальным уравнением первого порядка

,

где T – постоянная времени звена, k – коэффициент усиления звена.

Найдём переходную характеристику звена при воздействии на его вход сигнала в виде единичной ступенчатой функции . Для этого необходимо решить уравнение

.

Для решения заменим переменную , при этом ,

.

Характеристическое уравнение для последнего дифференциального уравнения имеет вид

.

Характеристическое уравнение имеет единственный корень , следовательно, решение преобразованного дифференциального уравнения будет иметь следующий вид:

,

где D – постоянная интегрирования, которую необходимо определить из начальных условий. Примем в качестве начального условия y(0) = 0. Тогда

, откуда .

Перейдя от переменной z(t) к переменной y(t), получим решение дифференциального уравнения переходной характеристики (переходную характеристику)

.

Общий вид переходной характеристики инерционного звена показан на рис. 43. Переходный процесс апериодический и имеет плавный характер. Установившееся значение выходной величины y(t) равно k, на рисунке этому значению соответствует единица.

Уровня 95 % от установившегося значения процесс достигает за время 3T, где T – постоянная времени инерционного звена.

За время процесс достигает значения 0,63 от установившегося значения выходной величины. И, наконец, если в точке t = 0 провести касательную к графику переходного процесса, то она пересечёт уровень установившегося значения на удалении t = T от начала процесса. Описанные соотношения позволяют определять параметры инерционного звена на основе графика переходной характеристики, полученной, например, экспериментально.

Если записать дифференциальное уравнение инерционного звена в операторном виде

,

то легко получить выражение для передаточной функции звена

которая имеет первый порядок (порядок передаточной функции соответствует порядку дифференциального уравнения и определяется наибольшей степенью параметра p в выражении передаточной функции).

Р ассмотренный вид дифференциального уравнения и экспоненциальный переходный процесс являются типичными для значительного числа различных по физической природе преобразовательных элементов систем автоматического управления. Такие элементы в структурной схеме представляются инерционными (апериодическими) звеньями для учёта их влияния на динамику системы автоматического управления.

Частотная передаточная функция инерционного звена

.

При получении выражения для частотной передаточной функции выполнены преобразования с целью исключения мнимой части из знаменателя дроби.

Модуль и фазовый угол частотной передаточной функции:

Амплитудно-фазовая частотная характеристика инерционного звена имеет вид, показанный на рис. 44. Ветвь, соответствующая отрицательным частотам, располагается над вещественной осью, положительным частотам – под вещественной осью. Кривая образует правильную окружность.

При нулевой частоте точка АФЧХ лежит на вещественной оси на удалении k от начала координат. Вектор, проведённый из начала координат в точку, соответствующую частоте , образует угол 45° с положительным направлением вещественной оси, т.е. инерционное звено на этой частоте имеет фазовый сдвиг, равный 45°. Максимальный фазовый сдвиг звена составляет 90°.

Кроме графика АФЧХ на рис. 44 показаны так называемые круговые диаграммы замыкания, которые используются для анализа качества системы и будут нами обсуждены в соответствующем разделе курса.

Логарифмическая амплитудная частотная характеристика

.

Эта характеристика обладает следующими свойствами:

, .

Логарифмическая фазовая частотная характеристика

,

при этом , , .

Общий вид ЛАХ и ЛФХ для инерционного звена показан на рис. 45. При низких частотах ЛАХ (кривая 1) близка к горизонтальной прямой линии, а при высоких частотах ЛАХ близка к прямой с наклоном – 20 дБ/дек. Наибольшая кривизна ЛАХ наблюдается в окрестностях частоты =1/T.

На практике часто используют для инерционного звена асимптотическую ЛАХ, состоящую из горизонтального отрезка прямой, проходящей на уровне 20lgk, и отрезка прямой с наклоном – 20 дБ/дек, стыкующегося с первым отрезком на частоте =1/T (ломаная линия 2 на рисунке). Погрешность от такой замены не превышает 3 дБ.

Частота =1/T называется частотой сопряжения. На этой частоте фазовый угол звена составляет 45°. При изменении частоты от нуля до бесконечности фазовый угол звена изменяется в пределах от нуля до 90°.