Критерий устойчивости Гурвица
Критерий Гурвица использует для оценки выполнения условия устойчивости системы коэффициенты характеристического уравнения замкнутой системы. Следовательно, для применения критерия Гурвица необходим характеристический полином замкнутой системы
.
Первым условием устойчивости системы автоматического управления по Гурвицу является положительность всех коэффициентов ci характеристического уравнения. Если это условие не соблюдается, то система неустойчива. Для заключения об устойчивости системы условия положительности коэффициентов недостаточно.
Вторым условием устойчивости системы по Гурвицу является положительность всех определителей, составленных из коэффициентов характеристического полинома на основе таблицы Гурвица. Для уравнения n-порядка таблица Гурвица имеет следующий вид:
C1 | C3 | C5 | C7 | C9 |
| 0 | 0 |
C0 | C2 | C4 | C6 | C8 |
| 0 | 0 |
0 | C1 | C3 | C5 | C7 |
| 0 | 0 |
0 | C0 | C2 | C4 | C6 |
| 0 | 0 |
0 | 0 | C1 | C3 | C5 |
| 0 | 0 |
0 | … | … | … | … | …. | 0 | 0 |
0 | … | … | … | … | …. | Cn | 0 |
0 |
|
|
|
| …. | Cn-1 | 0 |
0 | 0 | 0 | 0 | 0 | …. | Cn-2 | Cn |
При составлении таблицы по ее главной диагонали выписываются все коэффициенты характеристического уравнения, начиная с c1 по cn. Затем каждый столбец таблицы, начиная с главной диагонали, дополняется коэффициентами: вверх с возрастающим номером, вниз с убывающим номером. Вместо отсутствующих коэффициентов ставятся нули. В результате получается таблица (матрица), содержащая нули и коэффициенты характеристического полинома замкнутой системы.
На основе таблицы составляются определители
; …
Критерий Гурвица сводится к требованию положительности всех n определителей, составленных на основе таблицы, т.е. должно быть
, , … .
Условием нахождения системы на границе устойчивости является равенство нулю последнего определителя
или
определяет границу устойчивости апериодического типа, границу устойчивости колебательного типа.
Например, для системы третьего порядка характеристический полином
Таблица Гурвица для этого случая будет иметь следующий вид:
Д ля устойчивости системы необходимо выполнение требований ; ; ; , а также
При исследовании устойчивости по Гурвицу достаточно рассмотреть знак главных определителей, которые определяют знак всех остальных (зависимых) определителей. В литературе по теории управления на основе раскрытия определителей приводятся конечные условия устойчивости для систем разного порядка.
Используя критерий Гурвица, можно исследовать влияние того или иного параметра на устойчивость системы и определить допустимые границы изменения этого параметра. При исследовании находят зависимость для определителей от влияющего параметра x: , и затем строят графики функций этих зависимостей (рис. 80).
По графикам можно видеть, что условие устойчивости соблюдается только при изменении влияющего параметра x в пределах от Хmin до Хmax, поскольку только в этих границах все определители остаются положительными одновременно. Следовательно, по графику необходимо определить область изменения влияющего параметра, в которой все определители положительны одновременно. Изменение влияющего параметра в установленных таким образом пределах не приводит к потере системой устойчивости. Подобное исследование может потребоваться при необходимости ответа на вопрос о возможности замены того или иного элемента системы (например, при ремонте) без потери системой работоспособности.
Алгебраический критерий Гурвица удобно применять для исследования замкнутых систем автоматического регулирования, для которых известна передаточная функция замкнутой системы и, следовательно, известен характеристический полином замкнутой системы. При практическом применении критерия нет необходимости каждый раз составлять таблицу Гурвица и определители на её основе. Достаточно вычислить главные определители, выражения для которых применительно к системам разного порядка приводятся в учебной и справочной литературе по теории автоматического управления.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Гармоническая функция.
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- Безынерционное (усилительное) звено.
- Инерционное звено (апериодическое звено первого порядка).
- Колебательное звено.
- Интегрирующее звено.
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель
- Содержание