logo
Конспект лекций по ТАУ

Колебательное звено.

Колебательное структурное звено описывается дифференциальным уравнением второго порядка

.

Параметрами колебательного звена являются постоянные времени и , а также коэффициент усиления k.

Для нахождения выражения переходной характеристики звена необходимо решить приведенное уравнение при . Решение будет определяться корнями характеристического уравнения

или .

С учетом корней характеристического уравнения и начальных условий, получаем следующее решение дифференциального уравнения:

,

где и .

Вид переходной характеристики будет зависеть от соотношения вещественной и мнимой частей корней характеристического уравнения. При корни комплексные сопряжённые и переходная характеристика имеет характер затухающих колебаний. Частота колебаний определяется мнимой частью корня , а скорость затухания – вещественной частью корня α.

Если , то получаются два вещественных корня характеристического уравнения. При этом колебательность процесса исчезает и колебательное звено ведёт себя как последовательное соединение двух инерционных звеньев. В этом случае колебательное звено вырождается в двойное апериодическое звено.

П ри получаются чисто мнимые корни характеристического уравнения и колебательный процесс на выходе звена перестаёт затухать. Колебательное звено превращается в консервативное звено с незатухающими колебаниями постоянной амплитуды на выходе. Вид переходных характеристик для трёх рассмотренных случаев показан на рис. 46.

Колебательная затухающая характеристика 1 соответствует комплексным корням характеристического уравнения, апериодическая характеристика 2 – вещественным корням характеристического уравнения, незатухающие колебания 3 – мнимым корням характеристического уравнения.

Поскольку соотношение существенно влияет на свойства колебательного звена, то для этого звена вводят параметр , называемый коэффициентом относительного затухания (степенью успокоения). Чем меньше коэффициент затухания, тем сильнее выражен колебательный процесс и тем дольше он затухает. С учётом коэффициента относительного затухания дифференциальное уравнение звена записывают несколько иначе:

.

По виду переходной характеристики колебательного звена, снятой экспериментально, можно установить его параметры. Определение параметров показано на рис. 47, при этом используются следующие зависимости:

,

Для определения передаточной функции колебательного звена запишем его дифференциальное уравнение в операторном виде

,

отсюда выражение для передаточной функции

.

Частотная передаточная функция колебательного звена определяется через передаточную функцию

Модуль частотной передаточной функции и её аргумент:

, .

При увеличении частоты модуль стремится к нулю, а фазовый угол – к -180°. На частоте фазовый угол равен -90°. Общий вид АФЧХ колебательного звена приведен на рис. 48.

П ри нулевой частоте точка характеристики лежит на положительном направлении оси вещественных чисел на удалении k от начала координат. С ростом частоты вначале модуль частотной характеристики увеличивается, а затем начинает уменьшаться и точка движется в начало координат.

Точка характеристики приходит в начало координат со стороны отрицательной полуоси вещественных чисел, поскольку максимальный фазовый угол равен -180° (–π). Положительная ветвь характеристики лежит под осью вещественных чисел, отрицательная – над осью вещественных чисел.

Логарифмическая амплитудная частотная характеристика колебательного звена

.

Для частот характеристика , для частот , т.е. близка к прямой с наклоном -40 дБ/дек. Таким образом, ЛАХ можно аппроксимировать двумя прямыми: горизонтальной для малых частот и наклонной (с наклоном -40 дБ/дек) для высоких частот. Эти два участка стыкуются на частоте сопряжения . Аппроксимированная ЛАХ называется асимптотической и отражает частотные свойства звена приближённо.

Фазовая частотная характеристика описывается выражением

О бщий вид логарифмических частотных характеристик колебательного звена показан на рис. 49. ЛАХ звена (кривая 1) имеет максимум, который тем выше, чем меньше коэффициент χ относительного затухания звена. Поэтому в области частот, прилегающих к частоте сопряжения, погрешность аппроксимации ЛАХ асимптотической характеристикой может быть велика. Наличие максимума ЛАХ говорит о резонансных свойствах колебательного звена.

Если колебательное звено вырождается в двойное апериодическое, то ЛАХ приобретает плавный характер (кривая 2) и резонансные свойства звена исчезают.

Фазовая характеристика располагается в пределах изменения фазового угла от нуля до -180°. Наибольшие изменения фазовая характеристика претерпевает в окрестностях частоты сопряжения. На частоте сопряжения фазовый угол составляет -90°. ЛФХ 1 соответствует звену с малым коэффициентом относительного затухания, ЛФХ 2 – двойному апериодическому звену. Чем меньше коэффициент относительного затухания колебательного звена, тем круче становится логарифмическая фазовая характеристика в окрестностях частоты сопряжения.