Особенности реализации промышленных регуляторов
В ряде случаев при реализации П-регулятора из конструктивных соображений в качестве исполнительного механизма используют двигатель (электродвигатель, гидроцилиндр и т.д.), который в динамическом отношении является интегрирующим звеном с передаточной функцией
, где T – постоянная времени звена.
Чтобы в этом случае получить пропорциональный закон управления, исполнительный механизм охватывают глубокой отрицательной обратной связью через усилительное звено. Структурная схема регулятора вместе с исполнительным механизмом для этого случая показана на рис. 133, где kос – усилительное звено в местной обратной связи. В этом случае передаточная функция регулятора может быть найдена следующим образом:
,
где , при и .
При глубокой обратной связи и передаточная функция вырождается в коэффициент усиления, что и требуется для получения пропорционального регулятора.
Для получения ПИ-регулятора при использовании интегрального исполнительного механизма также приходится прибегать к введению обратных связей в структуре регулятора. Структура такого регулятора приведена на рис. 134. Местная обратная связь через инерционное звено является отрицательной (для упрощения схемы сумматор отдельно не показан). Исполнительный механизм представлен в структуре интегрирующим звеном.
П ередаточная функция регулятора определится как передаточная функция структуры, изображённой на рис. 134:
,
где балластная (не требуемая) постоянная времени регулятора.
Полученная передаточная функция включает передаточную функцию усилительного звена, передаточную функцию форсирующего звена первого порядка и передаточную функцию инерционного звена. Эта передаточная функция отличается от передаточной функции ПИ-регулятора только наличием инерционного звена. Звено с передаточной функцией является балластным звеном, которое делит ПИ-регулятор неидеальным. В общем случае реальный регулятор можно представить в виде соединения идеального ПИ-регулятора с балластным звеном, которое учитывает реальные инерционные свойства регулятора.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Гармоническая функция.
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- Безынерционное (усилительное) звено.
- Инерционное звено (апериодическое звено первого порядка).
- Колебательное звено.
- Интегрирующее звено.
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель
- Содержание