Пространство состояний системы автоматического управления
Система автоматического управления в каждый момент времени характеризуется состоянием объекта управления, т.е. значениями выходной величины объекта управления. Поскольку управляемая величина постоянно изменяется вследствие протекающих в системе управления процессов, то для полной характеристики состояния объекта управления необходимо знать не только значение управляемой величины, но и скорость её изменения в данный момент, ускорение изменения и производные более высокого порядка, если они существуют.
Следовательно, состояние системы автоматического управления в конкретный момент времени можно описать значениями производных управляемой величины (включая нулевую производную, т.е. саму управляемую величину)
.
Каждую из производных можно рассматривать в качестве самостоятельной характеристики состояния системы:
, тогда состояние системы опишется значениями n переменных величин. При изменении состояния системы все эти величины также изменяются. Следовательно, появляется возможность описания состояния системы автоматического управления вектором .
В ектор Y получил название – вектор состояния системы. Координаты вектора состояния являются фазовыми координатами системы. Графически вектор состояния системы можно изобразить в виде отрезка в n-мерном пространстве (рис. 21). Это n-мерное пространство рассматривается как пространство состояний системы автоматического управления, или фазовое пространство. Текущее состояние системы в фазовом пространстве отобразится точкой М, соответствующей концу вектора состояния.
Точка М называется изображающей точкой системы. Когда в системе происходит процесс, вектор состояния системы изменяется и изображающая точка М перемещается в фазовом пространстве. След изображающей точки (годограф вектора состояния) называется фазовой траекторией системы. Фазовая траектория отображает процессы, происходящие в системе, и, следовательно, по виду фазовой траектории можно судить об особенностях поведения системы автоматического управления.
При использовании пространства состояний систему автоматического управления можно описать системой из n дифференциальных уравнений первого порядка, имеющих вид:
. Если из этих уравнений исключить время, то получится уравнение фазовой траектории, которое будет иметь порядок меньший, чем исходное дифференциальное уравнение системы, что упрощает её исследование.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Гармоническая функция.
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- Безынерционное (усилительное) звено.
- Инерционное звено (апериодическое звено первого порядка).
- Колебательное звено.
- Интегрирующее звено.
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель
- Содержание