7.3. Системная модель громкоговорителя
Громкоговоритель представляет собой сложный электромеханоакустический преобразователь, в котором происходят линейное и нелинейное преобразование сигнала U(t), подводимого в виде напряжения от усилителя в распределенное в пространстве звуковое давление. Если входной сигнал представляет собой аналог реального музыкального или речевого сигнала, он имеет сложную временную нестационарную структуру (рис.7.1).
Рис. 7.1. Вид входного сигнала
Основная задача при проектировании акустических устройств, в которые входят громкоговорители, состоит в том, чтобы обеспечить неискаженную передачу временной структуры входного сигнала (технически реализуемой является задача передачи временной структуры сигнала с искажениями ниже порогов слышимости). Именно это условие выдвигает требования к неискаженной передаче частотного и динамического диапазона сигнала, а отсюда к уровню линейных и нелинейных искажений в громкоговорителях.
Рис. 7.2. Системная модель громкоговорителя
Функционально громкоговоритель может быть представлен в виде системной модели (рис. 7.2), состоящей из:
электромагнитного преобразователя - “магнитная цепь + звуковая катушка”, преобразовывающего подводимое напряжение U(t) в переменный ток I(t) и в электромеханическую силу F(t);
механического преобразователя - “подвижная система громкоговорителя”, осуществляющего линейное и нелинейное преобразование силы F(t) в распределенное по поверхности механическое смещение u*;
акустического преобразователя - “излучающая диафрагма + воздушная среда”, преобразовывающего смещения u* в распределенное в пространстве звуковое давление p(R, t).
Все эти подсистемы оказывают как прямое, так и обратное влияние друг на друга.
Рис. 7.3. Амплитудная характеристика громкоговорителя.
Работу громкоговорителя можно проиллюстрировать с помощью графика (рис. 7.3). Он показывает, как диффузор громкоговорителя отклоняется от условной средней линии положения покоя. Из графика видно, что чем больше ток, тем дальше отклоняется диффузор, а токам разного направления соответствует отклонение в разные стороны (вперед-назад). Приведенный график называют амплитудной характеристикой. Появление загибов на графике объясняется достаточно просто - ток не может беспредельно отклонять диффузор. Диффузор закреплен достаточно прочно, и амплитуда его отклонений ограничена. До тех пор пока громкоговоритель работает на линейном участке и отклонение прямо пропорционально току, преобразование "ток - звук" происходит без нелинейных искажений. Громкоговоритель не может одинаково хорошо преобразовать в звук переменные токи разных частот (рис.7.4).
Рис. 7.4. Частотная характеристика громкоговорителя.
- Часть 1 . Теоретические основы физической акустики
- Глава 1. Звуковые колебания и волны
- 1.1. Определения. Основные понятия.
- 1.2 Линейные характеристики звукового поля
- 1.3. Энергетические характеристики звукового поля
- 1.4. Акустические уровни
- 1.5. Плоская волна
- 1.6. Сферическая волна
- 1.7. Цилиндрическая волна
- 1.8. Интерференция волн
- 1.9. Отражение волн
- 1.10. Преломление звука
- 1.11. Дифракция волн
- 1.12. Затухание волн
- Контрольные вопросы к разделу 1
- Глава 2. Основы психологии восприятия звука
- 2.1. Основные положения
- 2.2. Понятия, относящиеся к восприятию звука
- 2.3. Физиология действия слуховой системы
- 2.3.1. Строение органов слуха
- 2.3.2. Передача слуховых раздражений в мозг
- 2.3.3. Физиологические характеристики слуха
- 2.5. Восприятие чистых тонов
- 2.6. Пространственные свойства слуха
- 2.3. Восприятие акустических шумов.
- 2.4. Негативные воздействия инфранизких звуковых частот
- 2.5. Влияние ненормированных параметров акустических сигналов и шумов на человека
- Глава 3. Восприятие и распознавание речевых образов
- 3.1 Роль речевого общения
- 3.2. Речевое сообщение и речевой сигнал
- 3.4. Фонемы
- 3.5. Значение эмоциональной составляющей речи
- 3.6. . Понятность и разборчивость речи
- 3.7. Измерение разборчивости речи.
- Контрольные вопросы
- Глава 4. Акустические характеристики помещений
- 4.1. Основные характеристики помещений и студий. Время реверберации
- 4.2. Акустическое отношение . Радиус гулкости
- 4. Контрольные вопросы
- Глава 5. Акустические шумы
- 5.1. Основные физические характеристики шума
- 5.2. Акустические расчёты при борьбе с шумами
- 5.3. Транспортные шумы
- 5.3. Шум в жилых домах
- 5.4. Общие методы по борьбе с шумом в жилых помещениях
- Борьба в приемнике
- Борьба в источнике
- Мероприятия по защите от городского транспортного шума
- 5.6. Измерение акустических шумов, сигналов и их анализ.
- 5.7. Контрольные вопросы.
- Глава 6. Запись звука
- Общие сведения о записи
- Микрофоны. Классификация и основные параметры
- 6.3. Устройство и принцип действия микрофонов
- 6.4. Основы механической звукозаписи
- 6.5. Особенности записи стереосигналов
- 6.6. Основы фотографической звукозаписи
- 6.7.Основы магнитной аналоговой записи
- 6.8. Общие сведения о цифровой записи
- 6.9. Основы магнитной цифровой записи.
- 6.10. Основы лазерной звукозаписи на компакт-диск
- 6.12. Основы магнитооптической записи
- 6.13 Запись на флэш – память
- 6.13.1.Общие понятия
- 6.13.2. Форматы флеш-карт
- 6.13.3. Организация памяти
- 1.12.4. Общий принцип работы ячейки флэш-памяти.
- 6.13.5. Виды ячеек памяти
- 6.14. Контрольные вопросы
- 7.2. Громкоговорители. Классификация и основные параметры
- 7.3. Системная модель громкоговорителя
- 7.4. Электродинамические
- 7.5. Электростатичекие
- 7.6. Рупорные
- 2.7. Типы акустических оформлений
- 2.7.1. Плоский экран
- 7.7.2. Открытый корпус
- 7.7.3. Закрытый корпус
- 7.7.4.Корпус с фазоинвертором
- 7.7.5. Корпус с лабиринтом
- 7.8. Рупорные системы
- 7.9. Специализация головок
- 7.9.1. Вч головки
- 7.9.2. Сч головки
- 7.9.2. Нч головки
- 7.10. Специализация ас
- 7.10.1. Двухполосные ас
- 7.10.2. Многополосные
- 7.11. Фильтры и корректирующие цепи
- 7.12. Переходная и импульсная характеристики. Искажения.
- 7.13. Сабвуферы
- 7.14. Проигрыватели грампластинок
- 7.15. Проигрыватели компакт-кассет
- 7.16. Проигрыватели компакт-дисков
- 7.17. Моно и стерео воспроизведение звука
- 7.18. Передаче звука
- 7.19. Контрольные вопросы