3. Аналитический метод разработки схем управления
Аналитический метод появился в сороковые годы, однако он и до настоящего времени не оформился в широко применяемую теорию, что объясняется его сложностью. Аналитический метод базируется на элементах алгебры логики. Поэтому, прежде чем приступить к его изложению, остановимся на некоторых положениях алгебры логики.
Алгебра логики – раздел математической логики, который рассматривает применение математического аппарата к логике. Алгебра логики – алгебра высказываний, причем под высказыванием понимается любое суждение, предложение или понятие, но с одним условием – оно должно быть в данный момент либо истинным, либо ложным и не может быть одновременно и тем, и другим. Обычно истинному высказыванию приписывается значение единицы (1), а ложному – значение ноль (0).
Переменные в алгебре логики имеют свою специфику. Они обязательно имеют два состояния, одно исключающее другое. Например, «включено-выключено» или «замкнуто-разомкнуто».
Логические действия, с помощью которых простые суждения группируются в сложные, называются функциями алгебры логики.
Наибольшее применение получили функции, входящие в систему логических операций: умножения (конъюнкции), сложения (дизъюнкции) и отрицания (инверсии). С помощью указанных трех операций можно выразить все остальные операции алгебры логики.
Логические умножение и сложение выражаются соответственно точкой (·) и знаком плюс (+), а отрицание – чертой над символом переменной. Символы переменных изображаются буквами латинского алфавита.
Логическое умножение (конъюнкция) – это функция, соответствующая логической связке И, с помощью которой простые суждения объединяются в сложные. Это сложное суждение ложно (равно нулю), если хотя бы одно из простых суждений ложно. Сложное суждение f(X), определяемое логическим умножением двух простых суждений а и b, можно записать в виде
Рис. 105. Электрические цепи, реализующие операции:
а – умножения; б – сложения
При числе простых суждений, равном т, формула логического умножения примет вид
Электрическая цепь, реализующая логическую операцию И, состоит из последовательно включенных контактов. Ток протекает по этой цепи только в том случае, если замкнуты все контакты, а и b (рис. 105, а).
Логическое сложение (дизъюнкция) – это функция, соответствующая логической связке ИЛИ, с помощью которой простые суждения объединяются в сложные. Новое суждение будет истинно (равно 1), если хотя бы одно из простых суждений истинно. Сложное суждение f (X), определяемое логическим сложением двух простых суждений а и b, записывается в виде
При числе простых суждений, равном n, формула логического сложения примет вид
В электрической схеме функции ИЛИ соответствует параллельное соединение контактов. Ток протекает по этой цепи, если замкнут контакт а или контакт b (рис. 105, б).
Логическое отрицание (инверсия) – это функция, соответствующая логической связке НЕ. При этом, если основное суждение ложно (равно нулю), то его логическое отрицание истинно (равно единице), и наоборот. Аналитически логическое отрицание записывается следующим образом:
В электрической цепи функцию логического отрицания может выполнять реле с размыкающимися контактами, которые будут разомкнуты при подаче напряжения на обмотку реле.
В алгебре логики существует целый ряд законов (соотношений), которые отображают тождественные логические функции. Рассмотрим наиболее важные соотношения, которые можно разбить на три группы.
К первой группе относятся соотношения, которые согласуются с правилами обычной алгебры:
переместительные законы:
1) ; 2)
сочетательные законы:
3)
4)
распределительный закон:
5)
Ко второй группе относятся соотношения, не согласующиеся с правилами обычной алгебры:
распределительный закон:
6)
закон повторения:
7)
8)
действия с константой:
9) 10)
В третью группу входят соотношения, не имеющие эквивалентов в обычной алгебре:
закон отрицания (инверсии):
11) ; 12)
действия с инверсными символами:
13) 14)
15) 16) 17)
Рассмотренный математический аппарат алгебры логики может быть с успехом применен для решения различных задач при проектировании схем управления различными механизмами, так как каждая цепочка схемы может находиться только в двух состояниях: либо проводить электрический ток, либо нет.
Рассмотрим пример. Пусть дана математическая модель
По этой модели построим схему (рис. 106, а), которая будет иметь девять управляющих элементов. Теперь с помощью законов алгебры логики попытаемся сократить число элементов схемы (операция уменьшения числа элементов носит название минимизация).
Рис. 106. Схемы математической модели:
а – до минимизации; б – после минимизации
Сначала рассмотрим первые четыре - сомножителя модели и на основании соотношений 5, 7 и 13 запишем:
Затем, используя соотношения 5, 7, 9, 13, окончательно получим:
Схема по полученной после минимизации модели представлена на рис. 106, б. Она проще и надежнее, так как содержит всего три управляющих контакта.
Рассмотрим сущность аналитического метода разработки схем управления на примере разработки схемы управления нереверсивным электродвигателем с помощью кнопок управления. В схеме необходимо предусмотреть тепловую защиту электродвигателя. Эта задача решается следующим образом.
1. Проводится анализ работы установки для определения последовательности включения и выключения ее механизмов и выявления управляющих элементов. Вводятся условные обозначения исполнительных, промежуточных и управляющих элементов. На основе анализа составляется буквенная циклограмма работы установки, которая должна отражать строгую последовательность включения и выключения механизмов.
В рассматриваемом примере правильная схема должна обеспечивать выполнение следующих функций. При нажатии на пусковую кнопку катушка магнитного пускателя возбуждается током. При этом ротор электродвигателя начинает вращаться. Для остановки электродвигателя напряжение с катушки магнитного пускателя должно быть снято. Это может быть достигнуто нажатием на стоповую кнопку (размыканием ее контактов) или размыканием контактов теплового реле, которое срабатывает при длительной перегрузке электродвигателя. Обозначим катушку магнитного пускателя буквой К, пусковую кнопку – буквой Е, стоповую кнопку – буквой S и контакты теплового реле – буквой С. Тогда буквенная циклограмма будет иметь вид
О + Е + К – Е + М – К – М,
где О – нулевой такт; М = S + С, ибо катушка К магнитного пускателя может быть обесточена стоповой кнопкой (ее контактами) или контактами теплового реле С.
2. На буквенной циклограмме определяются периоды включения (ПВ) и включающие периоды (ВП) исполнительных и промежуточных элементов. Периоду ПВ соответствует интервал от момента включения (пуска) элемента до момента его выключения (остановки), т. е. на буквенной циклограмме от знака плюс до знака минус элемента. Период ВП сдвинут относительно ПВ на один такт влево.
Определяем ПВ и ВП исполнительного элемента К на циклограмме. Других исполнительных и промежуточных элементов нет.
3. Составляется первичная математическая модель для каждого исполнительного или промежуточного элемента. Она представляет собой произведение двух элементов циклограммы: включающего (пускового) а и выключающего (остановочного) Ь, взятого со знаком инверсии, т. е.
где X – исполнительный или промежуточный элемент. На циклограмме исполнительный элемент после включающего элемента стоит со знаком плюс, а после выключающего – со знаком минус. Если включающий контакт находится, в циклограмме со знаком минус, то в модель его записывают со знаком инверсии. Наличие знака минус у выключающего контакта приводит к тому, что в модели знак инверсии отсутствует.
Записываем первичную математическую модель для исполнительного элемента К, где ; е – включающий элемент, т – выключающий.
4. Проводят три проверки составленной первичной модели. Цель первой проверки заключается в том, что исследуется природа включающего элемента на длительность включения. Включающий элемент является элементом длительного действия, если он не меняет своего знака во включающем периоде, и наоборот, кратковременного действия, когда меняет свой знак. Если в результате первой проверки будет установлено, что включающий элемент является элементом кратковременного действия, то первичную модель корректируют введением в нее самоблокировки, т. е. блокируют включающий элемент исполнительным или промежуточным элементом. Тогда скорректированная модель будет иметь вид
где х – блокировочный элемент.
В примере включающий элемент Е меняет свой знак во включающем периоде, следовательно, он является элементом кратковременного действия. Модель после корректировки будет иметь вид
Суть второй проверки сводится к определению длительности действия выключающего элемента. Если выключающий элемент меняет свой знак в периоде включения, то он является элементом кратковременного действия, а если не меняет, то элемент длительного действии. Если в результате второй проверки будет установлена кратковременность действия выключающего элемента, то следует провести корректировку математической модели, полученной по результатам первой проверки. Корректировка осуществляется продлением действия выключающего элемента существующим элементом циклограмм либо вновь введенным. Скорректированная модель будет иметь вид
(а)
или
(б)
где n – существующий элемент циклограммы или вновь введенный. Выражение (а) используют, если корректировка модели по результатам первой проверки не проводилась, а выражение (б), если проводилась.
В примере выключающий элемент не меняет своего знака во включающем периоде, следовательно, он является элементом длительного действия, и модель, полученная по результатам первой проверки, остается без изменений, т. е.
Третья проверка осуществляется для выявления ложных включений исследуемого элемента X во всей циклограмме. Сначала модель, полученная по результатам второй проверки, представляется в виде суммы слагаемых (если это возможно). Затем определяется значение суммарного весового коэффициента Кс для каждого из слагаемых математической модели или для модели в целом (если она не может быть представлена в виде суммы слагаемых). Для этого каждому элементу слагаемого (или модели) присваивается свой весовой коэффициент. Первому элементу присваивается значение весового коэффициента 20, второму – 21, третьему – 22, четвертому – 23 и т. д. Сумма этих коэффициентов равна значению суммарного весового коэффициента Кс. Однако следует помнить, что при суммировании весовые коэффициенты элементов, стоящие в модели со знаком инверсии, в сумму не входят.
В примере модель можно представить в виде слагаемых, т. е. Присвоим весовые коэффициенты элементам каждого слагаемого:
Тогда суммарный коэффициент для каждого слагаемого будет равен единице, т. е. Кс = 1, так элемент т имеет знак инверсии.
Теперь необходимо записать ряд весовых коэффициентов циклограммы для каждого слагаемого (или модели в целом). Коэффициенты пишут под каждой буквой циклограммы. Значение первого коэффициента зависит от того, с каким знаком приходят включающие и выключающие элементы к концу циклограммы, т. е. включенными или выключенными. Если они выключены, то в сумму первого коэффициента идет нуль и ряд начинается с нуля, а если включен хотя бы один, то в сумму идет значение коэффициента этого элемента. Получим:
Значение суммарного весового коэффициента Кс должно встречаться только во включающем периоде. Наличие его в других тактах указывает на то, что там существуют ложные включения и математическая модель требует корректировки.
В примере значение суммарного весового коэффициента, равное единице, встречается только во включающем периоде. Следовательно, ложных включений элемента К нет, и модель не требует корректировки.
Корректировку математической модели по результатам третьей проверки проводят «опоясыванием» (блокированием) тактов, в которых встречаются ложные включения, или рабочих тактов. Если «опоясывают» ложные включения каким-либо элементом Р, то математическую модель, полученную по результатам второй проверки, следует умножить на р со знаком инверсии, т. е.
если «опоясывают» рабочие такты, то модель умножают на р без знака инверсии, т. е.
В качестве «опоясывающего» элемента может быть использован какой-либо элемент циклограммы, который включается до начала рабочих тактов (или ложных включений) и выключается после окончания рабочих тактов. Сформулированное правило касается и вновь введенных элементов.
Если для корректировки математической модели элемента X вводится новый элемент, то он по своей функции является промежуточным элементом, и для него необходимо проводить математическое моделирование. Поэтому всегда необходимо стремиться к тому, чтобы в первую очередь использовать элемент,
Рис. 107. Схема управления нереверсивным электродвигателем
уже имеющийся в циклограмме, и только при отсутствии необходимого элемента вводить новый.
5. Составляется обобщенная модель, которая представляет собой сумму математических моделей всех исполнительных и промежуточных элементов, каждая из которых умножена на соответствующий исполнительный или промежуточный элемент.
В примере один исполнительный элемент, поэтому обобщенная математическая модель будет иметь вид
6. Проводят минимизацию обобщенной модели и по минимизированной модели строят электрическую схему. При этом исходят из того, что знак умножения соответствует последовательному соединению элементов, а знак сложения – параллельному. Все элементы математической модели без знака инверсии эквивалентны замыкающим контактам, а со знаком инверсии – размыкающим.
Схема управления, рассмотренная в примере, приведена на рис. 107.
Контрольные вопросы и задания
1. Расскажите о классификации систем автоматического программного управления.
2. Как осуществляется управление в функции времени?
3. Как осуществляется управление в функции пути?
4. Расскажите о типовых пусковых контактах и дайте их характеристику.
5. Расскажите об интуитивном методе построения схем управления.
6. Расскажите об аналитическом методе схем управления.
7. Расскажите о действиях алгебры логики.
8. Расскажите о законах алгебры логики.
9. Изложите последовательность разработки схем аналитическим методом.
10. В чем заключается суть первой проверки математической модели, и как она проводится?
11. В чем заключается суть второй проверки, и как она проводится?
12. В чем заключается суть третьей проверки, и как она проводится?
- А.Г. Староверов основы автоматизации производства
- Глава 1. Общие сведения о системах автоматики и составляющих ее элементах
- 1. Основные понятия и определения
- 2. Классификация систем автоматического управления
- 3. Элементы автоматических систем
- Глава 2. Первичные преобразователи
- 1. Общие сведения и классификация первичных преобразователей
- 2. Потенциометрические первичные преобразователи
- 3. Индуктивные первичные преобразователи
- 4. Емкостные первичные преобразователи
- 5. Тензометрические первичные преобразователи
- 6. Фотоэлектрические первичные преобразователи
- Глава 3. Усилители и стабилизаторы
- 2. Электромеханические и магнитные усилители
- 3. Электронные усилители
- 5. Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- 1. Электрические реле
- 2. Реле времени
- 3. Контактные аппараты управления
- 4. Бесконтактные устройства управления
- Наименование н обозначение логических функций н элементов
- 5. Вспомогательные устройства
- Глава 5. Задающие и исполнительные устройства
- 1. Классификация задающих и исполнительных устройств
- 2. Задающие устройства
- 3. Электрические исполнительные механизмы
- Раздел II. Контрольно-измерительные приборы и техника измерения параметров технологических процессов
- Глава 6. Общие сведения об измерении и контроле
- 1. Основные метрологические понятия техники измерения и контроля
- 2. Погрешности измерений
- 3. Методы измерения и классификация. Контрольно-измерительных приборов
- Глава 7. Контроль температуры
- 1. Температурные шкалы. Классификация технических приборов и устройств измерения температуры
- 2. Термометры расширения
- Технические характеристики стеклинных ртутных, термометров типа тт
- Технические характеристики дилатометрических гермометров
- 3. Манометрические термометры
- Характеристики манометрических термометров
- 4. Термоэлектрические термометры
- Основные характеристики термоэлектрических термометров
- Технические характеристики милливольтметров
- 5. Термометры сопротивления и термисторы
- Технические характеристики термометров сопротивления
- 6. Бесконтактное измерение температуры
- 7. Техника безопасности при контроле температуры
- Глава 8. Контроль давления и разрежения
- 1. Общие сведения и классификация приборов
- 2. Манометры
- Технические характеристики показывающих и сигнализирующих манометров
- 3. Тягонапоромеры
- Технические характеристики тягомеров, напоромеров и тягонапоромеров
- 4. Вакуумметры
- Технические характеристики промышленных вакуумметров
- 5. Техника безопасности при контроле давления
- Глава 9. Контроль расхода, количества и уровня
- 1. Общие сведения и классификация приборов
- 2. Расходомеры
- Технические характеристики ротаметров
- Технические характеристики шариковых расходомеров
- 3. Счетчики жидкостей и газов
- Технические характеристики счетчиков жидкостей и газов
- 4. Счетчики и весы твердых и сыпучих материалов
- 5. Уровнемеры жидкостей и сыпучих материалов
- Технические характеристики поплавковых уровнемеров с пружинным уравновешиванием
- Технические характеристики буйковых уровнемеров
- 6. Техника безопасности при контроле расхода, количества и уровня
- Глава 10. Контроль специальных параметров
- 1. Контроль состава газа
- 2. Контроль влажности и запыленности газа
- 3. Контроь влажности сыпучих материалов
- 4. Контроль плотности жидкости
- 5. Техника безопасности при контроле специальных параметров
- Раздел III. Автоматическое управление, контроль и регулирование
- Глава 11. Системы автоматики с программным управлением
- 1. Общие принципы построения систем
- 2. Интуитивный метод разработки схем управления
- 3. Аналитический метод разработки схем управления
- Глава 12. Автоматическая блокировка и защита в системах управления
- 1. Системы автоматической блокировки
- 2. Системы автоматической защиты
- Глава 13. Системы автоматического контроля и сигнализации
- 1. Структура и виды систем
- 2. Измерительные системы с цифровым отсчетом
- 3. Системы централизованного контроля
- 4. Системы автоматической сигнализации
- Глава 14. Системы автоматического регулирования
- 1. Основные понятия и определения
- 2. Обыкновенные системы регулирования
- 3. Самонастраивающиеся системы регулирования
- 4. Качественные показатели автоматического регулирования
- Глава 15. Объекты регулирования и их свойства
- 1. Общие сведения
- 2. Параметры объектов регулирования
- 3. Определение основных свойств объектов
- Глава 16. Типы регуляторов
- 1. Классификация автоматических регуляторов
- 2. Регуляторы прерывистого (дискретного) действия
- 3. Регуляторы непрерівного действия
- 4. Выбор типа регуляторов и параметров его настройки
- Формулы для определения параметров настройки регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- 1. Регуляторы прямого действия
- 2. Электрические регуляторы косвенного действия
- 3. Гидравлические регуляторы косвенного действия
- 4. Пневматические регуляторы косвенного действия
- 5. Техника безопасности при эксплуатации регуляторов
- Раздел IV. Микропроцессорные системы
- Глава 18. Общая характеристика микропроцессорных систем
- 1. Основные понятия и определения
- 2. Организация работы вычислительной машины
- 3. Производство эвм
- 4. Структура эвм
- Глава 19. Математическое и программное обеспечение микроЭвм
- 1. Системы счисления
- 2. Правила перевода одной системы счисления в другую
- 3. Формы представления чисел в эвм. Машинные коды
- 4. Основы программирования
- Глава 20. Внешние устройства микроЭвм
- 1. Классификация внешних устройств
- 2. Внешние запоминающие устройства
- 3. Устройства для связи эвм – оператор
- 4. Внешние устройства связи эвм с объектом
- Глава 21. Применение микропроцессорных систем
- 1. Состав систем автоматики с применением микроЭвм
- 2. Управление производственными процессами
- Раздел V. Промышленные роботы и роботизированные системы
- Глава 22. Общие сведения о промышленных роботах
- 1. Основные определения и классификация промышленных роботов
- 2. Структура промышленных роботов
- 3. Основные технические показатели роботов
- Глава 23. Конструкции промышленных роботов
- 1. Промышленные роботы агрегатно-модульного типа
- Технические данные агрегатной гаммы промышленных роботов лм40ц.00.00 [9]
- Технические характеристики и области обслуживания типового ряда промышленных роботов [9]
- Технические данные модулей агрегатной гаммы рпм-25 [9]
- 2. Интерактивные промышленные роботы
- 3. Адаптивные промышленные роботы
- 4. Захватные устройства
- 5. Приводы промышленных роботов
- Глава 24. Системы управления промышленными роботами
- 1. Назначение и классификация систем управления
- 2. Унифицированные системы управления
- Технические данные унифицированных систем управления уцм [9]
- Технические данные унифицированных систем управления упм [9]
- Технические данные контурных систем управления укм [9]
- 3. Информационные системы
- Глава 25. Роботизация промышленного производства
- 1. Основные типы роботизированных систем
- 2. Гибкие производственные системы с применением промышленных роботов
- 3. Техника безопасности при эксплуатации роботов
- Приложение Буквенные обозначения элементов электрических схем
- Список литературы