Инерционное звено (апериодическое звено первого порядка).
Инерционное звено описывается дифференциальным уравнением первого порядка
,
где T – постоянная времени звена, k – коэффициент усиления звена.
Найдём переходную характеристику звена при воздействии на его вход сигнала в виде единичной ступенчатой функции . Для этого необходимо решить уравнение
.
Для решения заменим переменную , при этом ,
.
Характеристическое уравнение для последнего дифференциального уравнения имеет вид
.
Характеристическое уравнение имеет единственный корень , следовательно, решение преобразованного дифференциального уравнения будет иметь следующий вид:
,
где D – постоянная интегрирования, которую необходимо определить из начальных условий. Примем в качестве начального условия y(0) = 0. Тогда
, откуда .
Перейдя от переменной z(t) к переменной y(t), получим решение дифференциального уравнения переходной характеристики (переходную характеристику)
.
Общий вид переходной характеристики инерционного звена показан на рис. 43. Переходный процесс апериодический и имеет плавный характер. Установившееся значение выходной величины y(t) равно k, на рисунке этому значению соответствует единица.
Уровня 95 % от установившегося значения процесс достигает за время 3T, где T – постоянная времени инерционного звена.
За время процесс достигает значения 0,63 от установившегося значения выходной величины. И, наконец, если в точке t = 0 провести касательную к графику переходного процесса, то она пересечёт уровень установившегося значения на удалении t = T от начала процесса. Описанные соотношения позволяют определять параметры инерционного звена на основе графика переходной характеристики, полученной, например, экспериментально.
Если записать дифференциальное уравнение инерционного звена в операторном виде
,
то легко получить выражение для передаточной функции звена
которая имеет первый порядок (порядок передаточной функции соответствует порядку дифференциального уравнения и определяется наибольшей степенью параметра p в выражении передаточной функции).
Р ассмотренный вид дифференциального уравнения и экспоненциальный переходный процесс являются типичными для значительного числа различных по физической природе преобразовательных элементов систем автоматического управления. Такие элементы в структурной схеме представляются инерционными (апериодическими) звеньями для учёта их влияния на динамику системы автоматического управления.
Частотная передаточная функция инерционного звена
.
При получении выражения для частотной передаточной функции выполнены преобразования с целью исключения мнимой части из знаменателя дроби.
Модуль и фазовый угол частотной передаточной функции:
Амплитудно-фазовая частотная характеристика инерционного звена имеет вид, показанный на рис. 44. Ветвь, соответствующая отрицательным частотам, располагается над вещественной осью, положительным частотам – под вещественной осью. Кривая образует правильную окружность.
При нулевой частоте точка АФЧХ лежит на вещественной оси на удалении k от начала координат. Вектор, проведённый из начала координат в точку, соответствующую частоте , образует угол 45° с положительным направлением вещественной оси, т.е. инерционное звено на этой частоте имеет фазовый сдвиг, равный 45°. Максимальный фазовый сдвиг звена составляет 90°.
Кроме графика АФЧХ на рис. 44 показаны так называемые круговые диаграммы замыкания, которые используются для анализа качества системы и будут нами обсуждены в соответствующем разделе курса.
Логарифмическая амплитудная частотная характеристика
.
Эта характеристика обладает следующими свойствами:
, .
Логарифмическая фазовая частотная характеристика
,
при этом , , .
Общий вид ЛАХ и ЛФХ для инерционного звена показан на рис. 45. При низких частотах ЛАХ (кривая 1) близка к горизонтальной прямой линии, а при высоких частотах ЛАХ близка к прямой с наклоном – 20 дБ/дек. Наибольшая кривизна ЛАХ наблюдается в окрестностях частоты =1/T.
На практике часто используют для инерционного звена асимптотическую ЛАХ, состоящую из горизонтального отрезка прямой, проходящей на уровне 20lgk, и отрезка прямой с наклоном – 20 дБ/дек, стыкующегося с первым отрезком на частоте =1/T (ломаная линия 2 на рисунке). Погрешность от такой замены не превышает 3 дБ.
Частота =1/T называется частотой сопряжения. На этой частоте фазовый угол звена составляет 45°. При изменении частоты от нуля до бесконечности фазовый угол звена изменяется в пределах от нуля до 90°.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Гармоническая функция.
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- Безынерционное (усилительное) звено.
- Инерционное звено (апериодическое звено первого порядка).
- Колебательное звено.
- Интегрирующее звено.
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель
- Содержание