2.6. Двумерные дискретные преобразования Фурье и Хартли
Для обработки двумерных сигналов, в частности, изображений, широко используются двумерные спектральные преобразования. Двумерное дискретное преобразование Фурье имеет вид [11, 21]:
(2.16)
Поскольку ядро преобразования Фурье является разделимым по переменным интегрирования, то для выполнения двумерного ДПФ на практике используется строчно-столбцовый метод.
Действительно,
откуда получаем с учетом (2.16):
Введя обозначение
(2.17)
получим:
. (2.18)
Согласно такому подходу, вначале выполняются одномерные ДПФ по строкам матрицы с отсчетами изображения, а затем выполняются одномерные ДПФ по столбцам матрицы промежуточных результатов, представляющих собой одномерные спектры по строкам изображения. В матричном виде это может быть записано следующим образом [12]:
(2.19).
Из (2.19) следует, что двумерное ДПФ сводится вначале к одномерному ДПФ матрицы X по столбцам, а затем к одномерному ДПФ по строкам матрицы промежуточных результатов .
Сложность вычислений на первом этапе составит N раз по N2 базовых операций, под которыми понимаются операции вычисления выражения под знаком суммы в (2.17) и (2.18), и столько же на втором, откуда: QДПФ = 2N3 (Б.О.)
В то же время непосредственные вычисления двумерного ДПФ по формуле (2.16) требуют вычислительных затрат:
Таким образом, строчно-столбцовый метод позволят существенно снизить вычислительную сложность алгоритма двумерного ДПФ с доопераций умножения. Вычисление одномерного ДПФ по каждой из координат преобразование выполняется на основе процедуры быстрого преобразования Фурье. Такой подход, однако, требует выполнения дополнительной процедуры транспонирования матрицы промежуточных результатов после выполнения обработки по одной из координат матрицы. При этом преобразование по следующей координате может выполняться только после того, как сформирована вся матрица промежуточных результатов и выполнено ее транспонирование.
Поэтому использование свойства разделимости ядра двумерного ДПФ по переменным суммирования приводит к снижению сложности вычислений в N/2 раз.
Однако далеко не все ядра двумерных спектральных ортогональных преобразований в явном виде обладают свойством разделимости. К таким преобразованиям относится, например, двумерное дискретное преобразование Хартли [3]:
Рассмотрим применение специального или модифицированного преобразования Хартли, в котором искусственно выполнено разделение ядра по координатам [3]:
(2.21)
Очевидно, что выражение (2.21) может быть представлено в виде:
Представляет интерес установить взаимосвязь между традиционным двумерным преобразованием Хартли (выражение (2.20)) и модифицированным преобразованием Хартли, определяемым согласно выражению (2.21). После ряда тригонометрических и алгебраических преобразований ядра в выражении (2.21) нетрудно получить [24]:
(2.22)
где в силу цикличности ядра (N-k)modN = -k; (N-l)modN = -l.
От компонент спектра Хартли можно перейти к компонентам спектра Фурье, используя известное соотношение:
Если записать в виде, подобном выражению (2.22), то получим выражение, определяющее связь между компонентами спектра Фурье и компонентами модифицированного преобразования Хартли:
(2.23)
Следует подчеркнуть, что определениекак через традиционное, так и через модифицированное преобразование Хартли требует вычисления только лишьилисоответственно. Остальные требуемые слагаемые легко могут быть найдены путем перекомпоновки матрицыили
Выражения (2.22) и (2.23) справедливы для любых действительных функций . В частных случаях, когдаxmn обладает симметрией относительно одной или двух координат, эти выражения существенно упрощаются.
Пусть Тогда, а формулы (2.22) и (2.23) приобретают вид:
Если , то как преобразование Хартли, так и преобразование Фурье эквивалентны модифицированному преобразованию Хартли:
;
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники