1.4. Линейные и нелинейные преобразования
Все преобразования ЦОС могут быть подразделены по своему типу на линейные и нелинейные преобразования [5,16,20,21].
Пусть - входная последовательность, а- выходная последовательность, связанная со входной через некоторое функциональное преобразованиеT
y(t1)=Tx(t) (1.7)
Для линейных преобразований справедлив аддитивный закон :
, (1.8)
где a и b – некоторые константы. Таким образом, линейное преобразование, применяемое к суперпозиции исходных сигналов эквивалентно по своему воздействию суперпозиции результатов преобразования каждого из сигналов. Свойство линейности является весьма важным для практических приложений, поскольку позволяет значительно упростить обработку различных сложных сигналов, являющихся суперпозицией некоторых элементарных сигналов. Так, в частности, за простейший элементарный сигнал может быть принят моногармонический сигнал x(t), описываемый функцией:
где a - амплитуда, - частота, T - период, , - начальная фаза.
Тогда более сложный полигармонический сигнал может быть записан как суперпозиция простейших моногармонических сигналов:
Cогласно теории цифровой обработки сигналов, любой сигнал может быть представлен как суперпозиция взвешенных единичных импульсов следующим образом:
(1.9)
где x(t) – отсчет сигнала в некоторый момент времени.
Если на вход системы ЦОС, выполняющей линейное преобразование, поступает единичный импульс, то сигнал h(t), снимаемый с выхода системы и являющийся откликом системы на единичный импульс, носит название импульсной характеристики (импульсного отклика) системы. Импульсный отклик является важнейшей характеристикой системы и позволяет описать ее как “черный ящик”, задав реакцию системы на некоторый простейший эталонный сигнал.
Если h(t) конечна, то такие системы называются КИХ-системами, т.е. системами с конечной импульсной характеристикой. Если h(t) бесконечна, то это БИХ-системы, т.е. системы с бесконечной импульсной характеристикой. В цифровой обработке сигналов имеет смысл рассматривать только КИХ-системы, поскольку время обработки, т.е. реакции системы на входной сигнал должно быть конечно.
Подставив (1.9) в (1.7), получаем для линейных преобразований:
(1.10)
Таким образом, для линейной системы результат обработки любого поступившего на вход сложного сигнала может быть определен как суперпозиция импульсных откликов системы на поступившие на вход единичные импульсы с соответствующей начальной задержкой и весом, определяемым весом соответствующего отсчета исходного сигнала.
Примерами линейных преобразований могут служить преобразования Фурье, Хартли, свертка и корреляция. К нелинейным преобразованиям относятся, в частности, многие алгоритмы распознавания, гистограммные преобразования и ранговая фильтрация.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники