4.5. Адаптивные фильтры
Адаптивный фильтр - это фильтр, передаточная функция (или частотная характеристика) которого адаптируется, т.е. изменяется таким образом, чтобы пропустить без искажений полезные составляющие сигнала и ослабить нежелательные сигналы или помехи [24]. Схема адаптивного фильтра представлена на рис.4.5.
Рис.4.5. Адаптивный фильтр
Подобный фильтр действует по принципу оценки статистических параметров сигнала и подстройки собственной передаточной функции таким образом, чтобы минимизировать некоторую целевую функцию. Эту функцию обычно формируют с помощью “эталонного” сигнала на задающем входе. Этот эталонный сигнал можно рассматривать как желаемый сигнал на выходе фильтра. Задача блока адаптации состоит в подстройке коэффициентов цифрового фильтра таким образом, чтобы свести к минимуму разность n=n-n , определяеющую ошибку в работе фильтра. Варианты включения адаптивного фильтра паказаны на рис. 4.6,а) и б).
Для варианта на рис.4.6,а) оптимальный импульсный отклик адаптивного фильтра равен импульсному отклику “черного ящика”:
Фильтры первого рода - это фильтры для подавления шума. Здесь поступающий сигнал, являющийся смесью полезного сигнала с шумом (помехой) приложен ко входу xn , а от другого источника, не содержащего никаких составляющих полезного сигнала, поступает образец “мешающего” сигнала - т.е. шума или помехи, тогда на выходе фильтра :
xn = Sn + x^n ;
yn = Sn ;
а)
Рис.4.6. Два варианта включения адаптивного фильтра
Для варианта на рис.4.6,б) оптимальный импульсный отклик фильтра равен обратному импульсному отклику “черного ящика”:
Примером адаптивного фильтра второго типа является фильтр для коррекции искажений при передаче данных по линии связи. В этом случае вход линии связи возбуждается известным сигналом, а искаженный сигнал поступает на вход x. Затем фильтр перестраивается с помощью подачи на вход x^ набора известных неискаженных сигналов.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники