3.2. Структурные схемы сау
Структурной схемой САУ называется графическая форма представления математической модели системы в виде соединения отдельных звеньев, каждое из которых задано каким-либо математическим оператором преобразования входного сигнала в выходной. Операторы преобразования могут быть заданы символами преобразования во временной области или в области изображений (передаточные функции) или с помощью статических и динамических характеристик. Звенья представляются на структурных схемах с помощью прямоугольников. Соединение их осуществляется стрелками, указывающими направления передачи сигналов управления.
Прохождение сигналов управления против направления, указанного стрелками, невозможно. Различные варианты представления звеньев структурной схемы показаны на рис. 3.2.
Отметим, что звенья, выполняющие математические операции «умножение» и «деление», изображаются также прямоугольниками. Звенья же, выполняющие алгебраические операции «сложение» и «вычитание», изображаются кружками с подходящими и отходящими стрелками. Причем, отсутствие у подходящих стрелок каких-либо математических знаков означает суммирование сигналов. Присутствие знаков у стрелки означает, что этот сигнал вычитается из сигнала, соответствующего другой стрелке.
Кроме общих структурных схем широко используются детализированные структурные схемы, состоящие только из безинерционных масштабных звеньев и идеальных интегрирующих звеньев с полностью вскрытыми связями между ними.
Детализированная структурная схема (ДСС) составляется из исходной общей схемы путем преобразования звеньев с так называемыми «сложными» передаточными функциями.
«Детализация» звена со «сложной» передаточной функцией осуществляется в следующей последовательности:
записывается операторное уравнение звена по исходной передаточной функции.
W(s)===,m n.
=;
Уравнение разрешается относительно старшей производной выходной величины x2:
;
Обе части уравнения делятся на коэффициент при x2 в левой части с целью получить выражение для x2
.
Пользуясь указанной последовательностью удается легко построить ДСС для звеньев с передаточными функциями невысокого порядка (n 2).
Приведем несколько примеров.
Пример1: Построить ДСС звена с передаточной функцией
W(s)=.
; x2Ts + x2 = ksx1; x2Ts = ksx1 x2; x2 = x1 x2 = x1 x2.
Пример 2: Передаточная функция исходного звена
T2sx2 + x2 = T1sx1 + x1; T2sx2 = T1sx1 + x1 x2; x2 = x1 + (x1 x2);
О x1 x2
Пример 3:
Составить ДСС стандартного звена 2-го порядка с передаточной функцией
W(s)=.
; T2s2x2 + 2Tsx2 + x2 = kx1; T2s2x2 = kx1 2Tsx2 x2; x2 = (kx1 2Tsx2 x2)
x1 x2
В случае исходной передаточной функции с n > 2 целесообразно пользоваться процедурой, называемой непосредственной декомпозицией. Суть ее заключается в том, что вводится фиктивная переменная x(s) и на нее умножается числитель и знаменатель передаточной функции:
.
Приравнивание числителя и знаменателя дает
x2(s)=x(s), (3.5)
x1(s)=x(s) (3.6)
Последнее выражение используется для определенияx(s) путем записи его относительно старшей производной с последующим делением на коэффициент при старшей производной: =x(s) = = . После определения x(s) строится схема вычисления x2(s) согласно первого выражения (3.5.). Общая схема построения ДСС «сложного» звена представлена на рис. 3.3.
В заключении отметим, что ДСС непрерывных систем нашли широкое применение для составления уравнений состояния, а также для составления и расчета параметров модели при аналоговом моделировании.
Пусть передаточная функция дискретного фильтра (регулятора) задана в виде:
W(z)=, где m и k – целые числа, чаще всего m = k; Коэффициенты bm и ak не равны нулю.
Cтруктурная схема программирования, реализующая полученные разностные уравнения, представлена на рис. 3.4. В схеме элементы задержки на один такт квантования обозначены как «Зад». Порядки числителя и знаменателя передаточной функции приняты равными m = k.
- Теория автоматического управления
- Часть 1
- Утверждено редакционно-издательским советом университета
- 1. Информация о дисциплине
- 1.2. Содержание дисциплины и виды учебной работы
- 1.2.1. Объем дисциплины и виды учебной работы
- 1.2.2. Перечень видов практических занятий и видов контроля
- Рабочие учебные материалы
- 2.1. Рабочая программа
- Раздел 1. Введение. Основные понятия и определения (10 часов)
- Раздел 2. Общая характеристика автоматического управления (10 часов)
- Раздел 3. Теория линейных непрерывных систем (60 часов)
- Тема 1. Виды математического описания непрерывных систем
- Тема 2. Частотные характеристики динамических систем
- Тема 3. Логарифмические частотные характеристики типовых соединений звеньев
- Тема 4. Математические модели динамических систем в форме переменных состояния
- Раздел 4. Анализ и синтез линейных сау (60 часов)
- Тема 5. Алгебраические и частотные методы анализа устойчивости линейных систем
- Тема 6. Качество и точность процессов в сау
- Тема 7. Синтез систем автоматического управления
- Тема 12. Z-преобразования
- Тема 13. Структурные схемы и передаточные функции
- Тема 14. Векторно-матричные модели
- Тема 15. Частотные характеристики
- Тема 16. Анализ устойчивости
- Тема 17. Анализ качества переходных процессов
- Тема 18. Синтез дискретных систем
- Раздел 6. Нелинейные системы (55 часов)
- Тема 19. Основные понятия и определения
- Тема 20. Методы линеаризации нелинейных систем
- Тема 21. Исследование нелинейных систем
- 2.2. Тематический план дисциплины
- 2.3. Структурно-логическая схема дисциплины «Теория автоматического управления»
- 2.4. Практический блок
- 2.5. Временной график изучения дисциплины
- 3.1. Библиографический список
- Дополнительная
- 3.2. Опорный конспект по дисциплине введение
- Раздел 1. Введение. Основные понятия и определения
- При работе с данным разделом Вам предстоит:
- 1.1. Основные понятия
- Вопросы для самопроверки
- Раздел 2. Общая характеристика автоматического управления
- При работе с данным разделом Вам предстоит:
- 2.1. Классификация и общая характеристика сау
- Вопросы для самопроверки
- 3.2. Структурные схемы сау
- 3.3. Преобразование структурных схем
- 3.3.1. Последовательное соединение звеньев
- 3.3.2. Параллельные соединения звеньев
- 3.3.3. Соединение с обратной связью
- 3.3.4. Перестановка местами звеньев структурной схемы
- 3.3.5. Перестановка местами узлов суммирования и динамических звеньев
- 3.3.6. Перестановка местами узлов разветвления
- 3.3.7. Инверсия направления прямого пути
- 3.3.8. Инверсия замкнутого контура
- 3.4. Ориентированные графы непрерывных сау
- 3.5. Описание систем управления моделями пространства состояний
- 3.5.1. Уравнения состояния сау
- 3.5.2. Векторно-матричное описание непрерывной системы
- 3.5.3. Преобразование Лапласа матричного уравнения
- 3.6. Временные характеристики систем и их элементов
- 3.6.1. Импульсные переходные характеристики
- 3.6.2. Переходные характеристики
- 3.7. Частотные характеристики непрерывных систем автоматического управления
- 3.7.1. Общие положения
- 3.7.2. Построение частотных характеристик
- 3.7.3. Логарифмические частотные характеристики
- 3.8. Типовые звенья
- 3.8.1. Безынерционное звено
- 3.8.2. Апериодическое звено
- 3.8.3. Интегрирующее звено
- 3.8.4. Дифференцирующее звено
- 3.8.5. Колебательное звено
- 3.9. Пример составления математического описания
- Первичная форма описания (дифференциальные и алгебраические уравнения)
- Передаточные функции элементов
- Структурная схема системы
- Вопросы для самопроверки
- Раздел 4. Анализ и синтез линейных сау
- При работе с данным разделом Вам предстоит:
- 4.1. Устойчивость линейных непрерывных систем управления
- 4.1.1. Общее условие устойчивости замкнутых непрерывных систем
- 4.1.2. Критерии устойчивости
- 4.1.2.1. Алгебраические критерии устойчивости
- 4.1.2.2. Частотные критерии устойчивости
- Критерий годографа характеристического полинома
- Критерий Найквиста
- 4.2. Анализ точности и качества процессов управления
- 4.2.1. Оценка точности сау в установившихся режимах
- 4.2.1.1. Точность сау в режиме стабилизации
- 4.2.1.2. Установившиеся ошибки при отработке медленно меняющихся внешних воздействий (коэффициенты ошибок)
- 4.2.1.3. Анализ влияния порядка астатизма системы на установившиеся ошибки при отработке типовых степенных воздействий
- 4.2.2. Оценка качества работы сау в переходных режимах
- 4.2.2.1. Показатели качества переходных процессов
- 4.2.2.2 Связь частотных показателей с основными прямыми показателями качества
- 4 Рис. 4.22.3. Синтез систем автоматического управления
- 4.3.1. Задачи и классификация методов синтеза
- 4.3.2. Синтез желаемой лачх разомкнутой системы
- 4.3.2.1. Синтез желаемой лачх в области низких частот
- Статическая система (с астатизмом равным нулю)
- Астатическая система первого порядка
- Приравнивая Emax и eДоп, имеем
- Делим (4.6) на (4.5) и получаем
- Подставляем (4.7) в (4.5), получаем
- 4.3.2.2. Синтез желаемой лачх в области средних частот
- 4.4. Синтез корректирующих устройств
- 4.4.1. Схемы включения и классификация корректирующих устройств
- 4.4.2. Определение передаточной функции последовательного корректирующего звена
- 4.4.3. Определение передаточной функции корректирующего устройства в виде отрицательной местной обратной связи
- В соответствии с характеристикой Lку(), полученной на рис. 4.39 графически, передаточная функция
- 4.5. Синтез последовательных корректирующих устройств (регуляторов) в системах подчиненного регулирования
- 4.5.1. Настройка на “оптимум по модулю”
- 4.5.2. Настройка на “симметричный оптимум”
- 4.5.3. Модальное управление при полностью измеряемом векторе состояния объекта управления
- 4.5.4. Модальное управление при неполной информации о векторе состояния объекта управления
- Вопросы для самопроверки
- Раздел 5. Теория дискретных сау
- При работе с данным разделом Вам предстоит:
- 5.1. Понятия о дискретных сау
- 5.2. Математическое представление дискретных функций
- 5.3.1. Связь спектров непрерывного и дискретного сигналов
- 5.3.2. Связь между непрерывным преобразованием Лапласа и z-преобразованием
- 5.3.3. Обратное преобразование Лапласа
- 5.4. Структурные схемы
- 5.4.1. Дискретно-непрерывная система
- 5.4.2. Дискретная система с несколькими импульсными элементами
- 5.5. Векторно-матричное описание
- Ей соответствует разностное уравнение
- Полное переходное уравнение состояния
- 5.6. Частотные характеристики
- 5.7. Устойчивость систем
- 5.8. Анализ качества
- Вопросы для самопроверки
- Раздел 6. Нелинейные системы
- При работе с данным разделом Вам предстоит:
- 6.1. Основные понятия и определения
- 6.2. Прямой метод Ляпунова
- 6.3. Частотный метод в.М. Попова
- 6.4. Метод гармонической линеаризации
- 6.5. Методы фазового пространства
- 6.6. Коррекция нелинейных систем
- 6.7. Скользящие режимы в релейных системах
- 6.8. Статистическая линеаризация нелинейных характеристик
- Вопросы для самопроверки
- Заключение
- 3.3. Глоссарий
- 3.4. Методические указания к выполнению лабораторных работ Работа 1. Исследование динамических свойств типовых звеньев сау
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 2. Исследование точности работы сау
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 3. Определение оптимальных настроечных параметров
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 4. Исследование дискретной системы автоматического управления
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 5. Исследование параметров релейной позиционной системы
- 1. Цель работы
- Основные теоретические положения
- Порядок выполнения работы
- 4. Блок контроля освоения дисциплины
- 4.3. Тренировочные тесты текущего
- Тест № 1
- Тест № 2
- Тест № 3
- 9. Составляющая переходного процесса называется вынужденной, если она стремится
- 10. Составляющая переходного процесса называется свободной, если она стремится
- 21. Какое уравнение соответствует звену первого порядка
- 24. Каким будет запас устойчивости по фазе, если на частоте среза лачх разомкнутой системы текущее значение фазы равно 120 градусов?
- 36. Какой из двух переходных процессов с одним и тем же установившемся значением заканчивается раньше – с большим значением линейной интегральной оценки или с меньшим?
- Тест № 6
- Правильные ответы на тренировочные тесты текущего контроля
- Итоговый контроль. Вопросы к экзаменам и зачету
- Содержание
- Людмила Петровна Козлова, Олег Иванович Золотов Теория автоматического управления
- Часть 1
- 1 91186, Санкт-Петербург, ул. Миллионная, д.5