5.1. Понятия о дискретных сау
Изучаемые вопросы:
Представление о дискретных САУ;
Z-преобразование;
Преобразование структурных схем
Анализ качества.
Дискретной системой называется такая САУ, в которой имеет место прерывистый характер передачи информации управления. Такой характер сигналов управления может быть обусловлен включением в систему импульсных или цифровых устройств. В связи с этими все дискретные системы разделяются на две большие группы:
импульсные САУ;
цифровые САУ.
Как в импульсных, так и в цифровых системах идет процесс преобразования непрерывных величин в дискретные (импульсные или цифровые) величины, называемый процессом квантования. Различают три вида квантования: квантование по времени, квантование по уровню, смешанное квантование.
При квантовании по времени осуществляется выборка из множества значений непрерывной величины дискретных значений через равноотстоящие промежутки времени (рис. 5.1). Временной интервал между двумя соседними выборками называется периодом квантования или дискретизации и обозначается через Т.
При квантовании по уровню из множества значений непрерывной величины выбираются значения, совпадающие с одним из уровней квантования (рис. 5.2).
При смешанном квантовании выборка осуществляется с постоянным шагом квантованияТ, но в качестве дискретный значений принимаются значения ближайших уровней квантования (рис. 5.3).
Смешанное квантование имеет место в цифровых системах при преобразовании непрерывных сигналов в цифровую форму.
Импульсные системы разделяются также по типу модуляции в зависимости от того, какой параметр импульса моделируется непрерывным сигналом. Различают системы с амплитудно-импульсной модуляцией (АИМ), с широтно-импульсной модуляцией (ШИМ), фазоимпульсной модуляцией (ФИМ), частотно-импульсной модуляцией (ЧИМ).
В дискретных системах вследствие наличия импульсных или цифровых элементов имеет место прерывистый во времени процесс передачи сигналов управления, поэтому для составления математических моделей приходится пользоваться аппаратом дискретных (решетчатых функций).
Решетчатой функцией времени называется функция дискретного аргумента – времени. Обозначается она f(nT) или просто f(n), где T –период дискретизации (квантования); n – число периодов с начала отсчета. Для характеристики дискретной функции в интервалах между моментами квантования вводят понятие смещенной решетчатой функции f(nT + T) или f(n, ), где - относительный сдвиг внутри периода дискретности:
0 < 1.
Аналогом производной непрерывной функции для решетчатых функций является конечная разность:
f(n, ) = f(n, ) f(n1, ).
Конечной разностью к-ого порядка называется решетчатая функция
kf(n, ) = k1f(n, ) k1f(n 1, ).
Определение разностей первого порядка для различных n показано на рис. 5.4.
Аналогом интеграла непрерывной функции для решетчатой функции является конечная сумма
f (n,) = f(i, ).
Уравнение, связывающее между собой решетчатые функции, их разности различных порядков и конечные суммы, называется разностным уравнением:
=
.
Разностные уравнения являются удобной формой представления зависимости между дискретными функциями и широко используются для записи алгоритмов работы цифровых устройств управления.
- Теория автоматического управления
- Часть 1
- Утверждено редакционно-издательским советом университета
- 1. Информация о дисциплине
- 1.2. Содержание дисциплины и виды учебной работы
- 1.2.1. Объем дисциплины и виды учебной работы
- 1.2.2. Перечень видов практических занятий и видов контроля
- Рабочие учебные материалы
- 2.1. Рабочая программа
- Раздел 1. Введение. Основные понятия и определения (10 часов)
- Раздел 2. Общая характеристика автоматического управления (10 часов)
- Раздел 3. Теория линейных непрерывных систем (60 часов)
- Тема 1. Виды математического описания непрерывных систем
- Тема 2. Частотные характеристики динамических систем
- Тема 3. Логарифмические частотные характеристики типовых соединений звеньев
- Тема 4. Математические модели динамических систем в форме переменных состояния
- Раздел 4. Анализ и синтез линейных сау (60 часов)
- Тема 5. Алгебраические и частотные методы анализа устойчивости линейных систем
- Тема 6. Качество и точность процессов в сау
- Тема 7. Синтез систем автоматического управления
- Тема 12. Z-преобразования
- Тема 13. Структурные схемы и передаточные функции
- Тема 14. Векторно-матричные модели
- Тема 15. Частотные характеристики
- Тема 16. Анализ устойчивости
- Тема 17. Анализ качества переходных процессов
- Тема 18. Синтез дискретных систем
- Раздел 6. Нелинейные системы (55 часов)
- Тема 19. Основные понятия и определения
- Тема 20. Методы линеаризации нелинейных систем
- Тема 21. Исследование нелинейных систем
- 2.2. Тематический план дисциплины
- 2.3. Структурно-логическая схема дисциплины «Теория автоматического управления»
- 2.4. Практический блок
- 2.5. Временной график изучения дисциплины
- 3.1. Библиографический список
- Дополнительная
- 3.2. Опорный конспект по дисциплине введение
- Раздел 1. Введение. Основные понятия и определения
- При работе с данным разделом Вам предстоит:
- 1.1. Основные понятия
- Вопросы для самопроверки
- Раздел 2. Общая характеристика автоматического управления
- При работе с данным разделом Вам предстоит:
- 2.1. Классификация и общая характеристика сау
- Вопросы для самопроверки
- 3.2. Структурные схемы сау
- 3.3. Преобразование структурных схем
- 3.3.1. Последовательное соединение звеньев
- 3.3.2. Параллельные соединения звеньев
- 3.3.3. Соединение с обратной связью
- 3.3.4. Перестановка местами звеньев структурной схемы
- 3.3.5. Перестановка местами узлов суммирования и динамических звеньев
- 3.3.6. Перестановка местами узлов разветвления
- 3.3.7. Инверсия направления прямого пути
- 3.3.8. Инверсия замкнутого контура
- 3.4. Ориентированные графы непрерывных сау
- 3.5. Описание систем управления моделями пространства состояний
- 3.5.1. Уравнения состояния сау
- 3.5.2. Векторно-матричное описание непрерывной системы
- 3.5.3. Преобразование Лапласа матричного уравнения
- 3.6. Временные характеристики систем и их элементов
- 3.6.1. Импульсные переходные характеристики
- 3.6.2. Переходные характеристики
- 3.7. Частотные характеристики непрерывных систем автоматического управления
- 3.7.1. Общие положения
- 3.7.2. Построение частотных характеристик
- 3.7.3. Логарифмические частотные характеристики
- 3.8. Типовые звенья
- 3.8.1. Безынерционное звено
- 3.8.2. Апериодическое звено
- 3.8.3. Интегрирующее звено
- 3.8.4. Дифференцирующее звено
- 3.8.5. Колебательное звено
- 3.9. Пример составления математического описания
- Первичная форма описания (дифференциальные и алгебраические уравнения)
- Передаточные функции элементов
- Структурная схема системы
- Вопросы для самопроверки
- Раздел 4. Анализ и синтез линейных сау
- При работе с данным разделом Вам предстоит:
- 4.1. Устойчивость линейных непрерывных систем управления
- 4.1.1. Общее условие устойчивости замкнутых непрерывных систем
- 4.1.2. Критерии устойчивости
- 4.1.2.1. Алгебраические критерии устойчивости
- 4.1.2.2. Частотные критерии устойчивости
- Критерий годографа характеристического полинома
- Критерий Найквиста
- 4.2. Анализ точности и качества процессов управления
- 4.2.1. Оценка точности сау в установившихся режимах
- 4.2.1.1. Точность сау в режиме стабилизации
- 4.2.1.2. Установившиеся ошибки при отработке медленно меняющихся внешних воздействий (коэффициенты ошибок)
- 4.2.1.3. Анализ влияния порядка астатизма системы на установившиеся ошибки при отработке типовых степенных воздействий
- 4.2.2. Оценка качества работы сау в переходных режимах
- 4.2.2.1. Показатели качества переходных процессов
- 4.2.2.2 Связь частотных показателей с основными прямыми показателями качества
- 4 Рис. 4.22.3. Синтез систем автоматического управления
- 4.3.1. Задачи и классификация методов синтеза
- 4.3.2. Синтез желаемой лачх разомкнутой системы
- 4.3.2.1. Синтез желаемой лачх в области низких частот
- Статическая система (с астатизмом равным нулю)
- Астатическая система первого порядка
- Приравнивая Emax и eДоп, имеем
- Делим (4.6) на (4.5) и получаем
- Подставляем (4.7) в (4.5), получаем
- 4.3.2.2. Синтез желаемой лачх в области средних частот
- 4.4. Синтез корректирующих устройств
- 4.4.1. Схемы включения и классификация корректирующих устройств
- 4.4.2. Определение передаточной функции последовательного корректирующего звена
- 4.4.3. Определение передаточной функции корректирующего устройства в виде отрицательной местной обратной связи
- В соответствии с характеристикой Lку(), полученной на рис. 4.39 графически, передаточная функция
- 4.5. Синтез последовательных корректирующих устройств (регуляторов) в системах подчиненного регулирования
- 4.5.1. Настройка на “оптимум по модулю”
- 4.5.2. Настройка на “симметричный оптимум”
- 4.5.3. Модальное управление при полностью измеряемом векторе состояния объекта управления
- 4.5.4. Модальное управление при неполной информации о векторе состояния объекта управления
- Вопросы для самопроверки
- Раздел 5. Теория дискретных сау
- При работе с данным разделом Вам предстоит:
- 5.1. Понятия о дискретных сау
- 5.2. Математическое представление дискретных функций
- 5.3.1. Связь спектров непрерывного и дискретного сигналов
- 5.3.2. Связь между непрерывным преобразованием Лапласа и z-преобразованием
- 5.3.3. Обратное преобразование Лапласа
- 5.4. Структурные схемы
- 5.4.1. Дискретно-непрерывная система
- 5.4.2. Дискретная система с несколькими импульсными элементами
- 5.5. Векторно-матричное описание
- Ей соответствует разностное уравнение
- Полное переходное уравнение состояния
- 5.6. Частотные характеристики
- 5.7. Устойчивость систем
- 5.8. Анализ качества
- Вопросы для самопроверки
- Раздел 6. Нелинейные системы
- При работе с данным разделом Вам предстоит:
- 6.1. Основные понятия и определения
- 6.2. Прямой метод Ляпунова
- 6.3. Частотный метод в.М. Попова
- 6.4. Метод гармонической линеаризации
- 6.5. Методы фазового пространства
- 6.6. Коррекция нелинейных систем
- 6.7. Скользящие режимы в релейных системах
- 6.8. Статистическая линеаризация нелинейных характеристик
- Вопросы для самопроверки
- Заключение
- 3.3. Глоссарий
- 3.4. Методические указания к выполнению лабораторных работ Работа 1. Исследование динамических свойств типовых звеньев сау
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 2. Исследование точности работы сау
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 3. Определение оптимальных настроечных параметров
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 4. Исследование дискретной системы автоматического управления
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 5. Исследование параметров релейной позиционной системы
- 1. Цель работы
- Основные теоретические положения
- Порядок выполнения работы
- 4. Блок контроля освоения дисциплины
- 4.3. Тренировочные тесты текущего
- Тест № 1
- Тест № 2
- Тест № 3
- 9. Составляющая переходного процесса называется вынужденной, если она стремится
- 10. Составляющая переходного процесса называется свободной, если она стремится
- 21. Какое уравнение соответствует звену первого порядка
- 24. Каким будет запас устойчивости по фазе, если на частоте среза лачх разомкнутой системы текущее значение фазы равно 120 градусов?
- 36. Какой из двух переходных процессов с одним и тем же установившемся значением заканчивается раньше – с большим значением линейной интегральной оценки или с меньшим?
- Тест № 6
- Правильные ответы на тренировочные тесты текущего контроля
- Итоговый контроль. Вопросы к экзаменам и зачету
- Содержание
- Людмила Петровна Козлова, Олег Иванович Золотов Теория автоматического управления
- Часть 1
- 1 91186, Санкт-Петербург, ул. Миллионная, д.5