6.1. Основные понятия и определения
Изучаемые вопросы:
Основные понятия и определения;
Методы линеаризации;
Исследования нелинейных систем
Строго говоря, линейных систем в природе не существует, так как характеристики реальных устройств нелинейные и некоторые из них не могут быть линеаризованы, например, характеристика логического элемента. Кроме того, есть системы, например, релейные, адаптивные, в которых принципиально необходимо учитывать нелинейности.
Нелинейной системой называется такая система, в состав которой входит хотя бы одно звено, описываемое нелинейным уравнением. Такое звено называется нелинейным звеном или нелинейным элементом.
Уравнение является нелинейным, если некоторые координаты или их производные по времени входят в уравнение в виде произведений или степени, отличной от первой, а также если коэффициенты уравнения являются функциями некоторых координат или их производных.
При составлении дифференциальных уравнений нелинейных систем сначала составляют дифференциальные уравнения для каждого устройства системы. При этом характеристики устройств, допускающих линеаризацию, линеаризуются. В результате получают систему дифференциальных уравнений, в которой одно или несколько уравнений нелинейные. Устройства, допускающие линеаризацию, образуют линейную часть системы, а устройства, которые не могут быть линеаризованы, составляют нелинейную часть.
Путем эквивалентного преобразования структурных схем и нелинейных звеньев большое число нелинейных систем можно представить в виде замкнутого контура с последовательным включением нелинейного элемента (НЭ) и линейной части (ЛЧ), как показано на рис. 6.1.
Рис. 6.1
На рисунке 6.1 приняты следующие обозначения: НЭ - нелинейный элемент; ЛЧ - линейная часть.
Классификация нелинейных элементов и систем. Нелинейные звенья классифицируются по различным признакам. Наибольшее распространение получила классификация по статическим и динамическим характеристикам, так как в системах чаще всего нелинейности приходится учитывать в виде характеристик. Эти характеристики могут быть как однозначными, так и двузначными (петлевыми), симметричными и несимметричными относительно начала координат.
Различают следующие основные типы нелинейных звеньев.
Нелинейные звенья с гладкими криволинейными характеристиками. Примеры таких характеристик приведены на рис. 6.2.
Рис. 6.2
На рис. 6.2, а изображена двузначная гистерезисная (запаздывающая) характеристика. Характеристика (рис. 6.2, б) отображает насыщение или ограничение и соответствует реальному амплитудному усилителю, а характеристика (рис. 6.2, в) - реальному усилителю мощности. Характеристики (рис. 6.2, а и б) нечетно-симметричные, а характеристика (рис. 6.2, в) четно-симметричная.
Нелинейные звенья с кусочно-линейными характеристиками. Некоторые из таких характеристик представлены на рис. 6.3.
Рис. 6.3
Характеристика (рис. 6.3, а) отображает насыщение, характеристика (рис. 6.3, б) зону нечувствительности, а характеристика (рис. 6.3, в) соответствует звену, обладающему одновременно зоной нечувствительности и насыщением. Характеристика (рис. 6.3, г) позволяет учесть люфт или зазор кинематической передачи.
Релейные звенья это элементы, которые на своем выходе выдают конечное число фиксированных значений. Три наиболее типовые релейные характеристики изображены на рис. 6.4.
Рис. 6.4. Релейные характеристики:
Характеристика (рис. 6.4, а) соответствует идеальному двухпозиционному реле, характеристика (рис. 6.4, б) трехпозиционному реле с зоной нечувствительности, а характеристика (рис. 6.4, в) двухпозиционному поляризованному реле.
Кроме того, на рис. 6.4 показано прохождение непрерывного сигнала через соответствующие типы реле. Откуда следует, что коэффициент передачи реле зависит от величины входного воздействия.
Для улучшения динамических свойств систем специально созданы нелинейные звенья с опережающими двузначными статическими характеристиками.
Часто встречаются элементы с несимметричными относительно начала координат статическими характеристиками.
Нелинейные вычислительные звенья, например, множительное, логическое звено и другие.
Различают статические и динамические нелинейности. Первые представляются в виде нелинейных статических характеристик, а вторые - в виде нелинейных дифференциальных уравнений.
Нелинейные системы обычно классифицируются в соответствии с видом входящих в них нелинейных звеньев.
Особенности нелинейных систем. Поведение нелинейных систем, при наличии существенных нелинейностей, значительно отличается от поведения их линейных моделей.
1. Выходная величина нелинейной системы непропорциональна входному воздействию; форма реакции системы зависит от величины входного воздействия.
2. Характер процессов в нелинейной системе зависит от величины начального отклонения, вызванного возмущением. В связи с этим для нелинейных систем существуют понятия об устойчивости “в малом”, “в большом”, “в целом”.
Система устойчива “в малом”, если она устойчива при малых (бесконечно малых) начальных отклонениях. Система устойчива “в большом”, если она устойчива при больших (конечных по величине) начальных отклонениях. Система устойчива “в целом”, если она устойчива при любых больших (неограниченных по величине) начальных отклонениях.
3. Для нелинейных систем характерен режим незатухающих периодических колебаний с постоянной амплитудой и частотой (автоколебаний), возникающий в системах при отсутствии периодических внешних воздействий.
4. При затухающих колебаниях переходного процесса в нелинейных системах происходит изменение периода колебаний.
Основные задачи исследования нелинейных систем. Методы исследования. Задачами исследования нелинейных систем являются:
1) отыскание возможных состояний равновесия системы и исследование их устойчивости;
2) определение автоколебаний и анализ их устойчивости;
3) исследование процессов перехода системы к тому или иному установившемуся состоянию при различных начальных отклонениях.
Начало исследования нелинейных систем обычно связано с рассмотрением устойчивости и определением автоколебаний.
В настоящее время не создано общей теории анализа нелинейных систем. Разработанные методы позволяют решать лишь отдельные нелинейные задачи.
Все инженерные методы исследования нелинейных систем разделяются на две основные группы.
Точные методы, например, метод А.М.Ляпунова, метод фазовой плоскости, метод точечных преобразований, частотный метод В.М.Попова, основаны на точном решении нелинейного дифференциального уравнения, может быть и упрощенного.
Приближенные методы, такие как метод гармонической линеаризации, метод статистической линеаризации, основаны на линеаризации нелинейного уравнения системы.
Мощным и эффективным методом исследования нелинейных систем является моделирование, инструментарием которого служит компьютер. В настоящее время многие сложные для аналитического решения теоретические и практические вопросы сравнительно легко могут быть решены с помощью вычислительной техники.
- Теория автоматического управления
- Часть 1
- Утверждено редакционно-издательским советом университета
- 1. Информация о дисциплине
- 1.2. Содержание дисциплины и виды учебной работы
- 1.2.1. Объем дисциплины и виды учебной работы
- 1.2.2. Перечень видов практических занятий и видов контроля
- Рабочие учебные материалы
- 2.1. Рабочая программа
- Раздел 1. Введение. Основные понятия и определения (10 часов)
- Раздел 2. Общая характеристика автоматического управления (10 часов)
- Раздел 3. Теория линейных непрерывных систем (60 часов)
- Тема 1. Виды математического описания непрерывных систем
- Тема 2. Частотные характеристики динамических систем
- Тема 3. Логарифмические частотные характеристики типовых соединений звеньев
- Тема 4. Математические модели динамических систем в форме переменных состояния
- Раздел 4. Анализ и синтез линейных сау (60 часов)
- Тема 5. Алгебраические и частотные методы анализа устойчивости линейных систем
- Тема 6. Качество и точность процессов в сау
- Тема 7. Синтез систем автоматического управления
- Тема 12. Z-преобразования
- Тема 13. Структурные схемы и передаточные функции
- Тема 14. Векторно-матричные модели
- Тема 15. Частотные характеристики
- Тема 16. Анализ устойчивости
- Тема 17. Анализ качества переходных процессов
- Тема 18. Синтез дискретных систем
- Раздел 6. Нелинейные системы (55 часов)
- Тема 19. Основные понятия и определения
- Тема 20. Методы линеаризации нелинейных систем
- Тема 21. Исследование нелинейных систем
- 2.2. Тематический план дисциплины
- 2.3. Структурно-логическая схема дисциплины «Теория автоматического управления»
- 2.4. Практический блок
- 2.5. Временной график изучения дисциплины
- 3.1. Библиографический список
- Дополнительная
- 3.2. Опорный конспект по дисциплине введение
- Раздел 1. Введение. Основные понятия и определения
- При работе с данным разделом Вам предстоит:
- 1.1. Основные понятия
- Вопросы для самопроверки
- Раздел 2. Общая характеристика автоматического управления
- При работе с данным разделом Вам предстоит:
- 2.1. Классификация и общая характеристика сау
- Вопросы для самопроверки
- 3.2. Структурные схемы сау
- 3.3. Преобразование структурных схем
- 3.3.1. Последовательное соединение звеньев
- 3.3.2. Параллельные соединения звеньев
- 3.3.3. Соединение с обратной связью
- 3.3.4. Перестановка местами звеньев структурной схемы
- 3.3.5. Перестановка местами узлов суммирования и динамических звеньев
- 3.3.6. Перестановка местами узлов разветвления
- 3.3.7. Инверсия направления прямого пути
- 3.3.8. Инверсия замкнутого контура
- 3.4. Ориентированные графы непрерывных сау
- 3.5. Описание систем управления моделями пространства состояний
- 3.5.1. Уравнения состояния сау
- 3.5.2. Векторно-матричное описание непрерывной системы
- 3.5.3. Преобразование Лапласа матричного уравнения
- 3.6. Временные характеристики систем и их элементов
- 3.6.1. Импульсные переходные характеристики
- 3.6.2. Переходные характеристики
- 3.7. Частотные характеристики непрерывных систем автоматического управления
- 3.7.1. Общие положения
- 3.7.2. Построение частотных характеристик
- 3.7.3. Логарифмические частотные характеристики
- 3.8. Типовые звенья
- 3.8.1. Безынерционное звено
- 3.8.2. Апериодическое звено
- 3.8.3. Интегрирующее звено
- 3.8.4. Дифференцирующее звено
- 3.8.5. Колебательное звено
- 3.9. Пример составления математического описания
- Первичная форма описания (дифференциальные и алгебраические уравнения)
- Передаточные функции элементов
- Структурная схема системы
- Вопросы для самопроверки
- Раздел 4. Анализ и синтез линейных сау
- При работе с данным разделом Вам предстоит:
- 4.1. Устойчивость линейных непрерывных систем управления
- 4.1.1. Общее условие устойчивости замкнутых непрерывных систем
- 4.1.2. Критерии устойчивости
- 4.1.2.1. Алгебраические критерии устойчивости
- 4.1.2.2. Частотные критерии устойчивости
- Критерий годографа характеристического полинома
- Критерий Найквиста
- 4.2. Анализ точности и качества процессов управления
- 4.2.1. Оценка точности сау в установившихся режимах
- 4.2.1.1. Точность сау в режиме стабилизации
- 4.2.1.2. Установившиеся ошибки при отработке медленно меняющихся внешних воздействий (коэффициенты ошибок)
- 4.2.1.3. Анализ влияния порядка астатизма системы на установившиеся ошибки при отработке типовых степенных воздействий
- 4.2.2. Оценка качества работы сау в переходных режимах
- 4.2.2.1. Показатели качества переходных процессов
- 4.2.2.2 Связь частотных показателей с основными прямыми показателями качества
- 4 Рис. 4.22.3. Синтез систем автоматического управления
- 4.3.1. Задачи и классификация методов синтеза
- 4.3.2. Синтез желаемой лачх разомкнутой системы
- 4.3.2.1. Синтез желаемой лачх в области низких частот
- Статическая система (с астатизмом равным нулю)
- Астатическая система первого порядка
- Приравнивая Emax и eДоп, имеем
- Делим (4.6) на (4.5) и получаем
- Подставляем (4.7) в (4.5), получаем
- 4.3.2.2. Синтез желаемой лачх в области средних частот
- 4.4. Синтез корректирующих устройств
- 4.4.1. Схемы включения и классификация корректирующих устройств
- 4.4.2. Определение передаточной функции последовательного корректирующего звена
- 4.4.3. Определение передаточной функции корректирующего устройства в виде отрицательной местной обратной связи
- В соответствии с характеристикой Lку(), полученной на рис. 4.39 графически, передаточная функция
- 4.5. Синтез последовательных корректирующих устройств (регуляторов) в системах подчиненного регулирования
- 4.5.1. Настройка на “оптимум по модулю”
- 4.5.2. Настройка на “симметричный оптимум”
- 4.5.3. Модальное управление при полностью измеряемом векторе состояния объекта управления
- 4.5.4. Модальное управление при неполной информации о векторе состояния объекта управления
- Вопросы для самопроверки
- Раздел 5. Теория дискретных сау
- При работе с данным разделом Вам предстоит:
- 5.1. Понятия о дискретных сау
- 5.2. Математическое представление дискретных функций
- 5.3.1. Связь спектров непрерывного и дискретного сигналов
- 5.3.2. Связь между непрерывным преобразованием Лапласа и z-преобразованием
- 5.3.3. Обратное преобразование Лапласа
- 5.4. Структурные схемы
- 5.4.1. Дискретно-непрерывная система
- 5.4.2. Дискретная система с несколькими импульсными элементами
- 5.5. Векторно-матричное описание
- Ей соответствует разностное уравнение
- Полное переходное уравнение состояния
- 5.6. Частотные характеристики
- 5.7. Устойчивость систем
- 5.8. Анализ качества
- Вопросы для самопроверки
- Раздел 6. Нелинейные системы
- При работе с данным разделом Вам предстоит:
- 6.1. Основные понятия и определения
- 6.2. Прямой метод Ляпунова
- 6.3. Частотный метод в.М. Попова
- 6.4. Метод гармонической линеаризации
- 6.5. Методы фазового пространства
- 6.6. Коррекция нелинейных систем
- 6.7. Скользящие режимы в релейных системах
- 6.8. Статистическая линеаризация нелинейных характеристик
- Вопросы для самопроверки
- Заключение
- 3.3. Глоссарий
- 3.4. Методические указания к выполнению лабораторных работ Работа 1. Исследование динамических свойств типовых звеньев сау
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 2. Исследование точности работы сау
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 3. Определение оптимальных настроечных параметров
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 4. Исследование дискретной системы автоматического управления
- 1. Цель работы
- 2. Основные теоретические положения
- 3. Задание на лабораторную работу
- Работа 5. Исследование параметров релейной позиционной системы
- 1. Цель работы
- Основные теоретические положения
- Порядок выполнения работы
- 4. Блок контроля освоения дисциплины
- 4.3. Тренировочные тесты текущего
- Тест № 1
- Тест № 2
- Тест № 3
- 9. Составляющая переходного процесса называется вынужденной, если она стремится
- 10. Составляющая переходного процесса называется свободной, если она стремится
- 21. Какое уравнение соответствует звену первого порядка
- 24. Каким будет запас устойчивости по фазе, если на частоте среза лачх разомкнутой системы текущее значение фазы равно 120 градусов?
- 36. Какой из двух переходных процессов с одним и тем же установившемся значением заканчивается раньше – с большим значением линейной интегральной оценки или с меньшим?
- Тест № 6
- Правильные ответы на тренировочные тесты текущего контроля
- Итоговый контроль. Вопросы к экзаменам и зачету
- Содержание
- Людмила Петровна Козлова, Олег Иванович Золотов Теория автоматического управления
- Часть 1
- 1 91186, Санкт-Петербург, ул. Миллионная, д.5