Введение
Бурный прогресс вычислительной техники в последние десятилетия привел к широкому внедрению методов цифровой обработки информации практически во всех областях научных исследований и народно-хозяйственной деятельности. При этом среди различных применений средств вычислительной техники одно из важнейших мест занимают системы цифровой обработки сигналов (ЦОС), нашедшие использование при обработке данных дистанционного зондирования, медико-биологических исследований, решении задач навигации аэрокосмических и морских объектов, связи, радиофизики, цифровой оптики и в ряде других приложений [1,7,8,11].
Цифровая обработка сигналов (ЦОС) - это динамично развивающаяся область ВТ, которая охватывает как технические, так и программные средства. Родственными областями для цифровой обработки сигналов являются теория информации, в частности, теория оптимального приема сигналов и теория распознавания образов. При этом в первом случае основной задачей является выделение сигнала на фоне шумов и помех различной физической природы, а во втором - автоматическое распознавание, т.е. классификация и идентификация сигнала.
В теории информации под сигналом понимается материальный носитель информации. В цифровой же обработке сигналов под сигналом будем понимать его математическое описание, т.е. некоторую вещественную функцию, содержащую информацию о состоянии или поведении физической системы при каком-нибудь событии, которая может быть определена на непрерывном или дискретном пространстве изменения времени или пространственных координат.
В широком смысле под системами ЦОС понимают комплекс алгоритмических, аппаратных и программных средств. Как правило, системы содержат специализированные технические средства предварительной (или первичной) обработки сигналов и специальные технические средства для вторичной обработки сигналов. Средства предварительной обработки предназначены для обработки исходных сигналов, наблюдаемых в общем случае на фоне случайных шумов и помех различной физической природы и представленных в виде дискретных цифровых отсчетов, с целью обнаружения и выделения (селекции) полезного сигнала, его пеленгования и оценки характеристик обнаруженного сигнала. Полученная в результате предварительной обработки полезная информация поступает в систему вторичной обработки для классификации, архивирования, структурного анализа и т.д. [7,8].
Основными процедурами предварительной обработки сигналов являются процедуры быстрых дискретных ортогональных преобразований (БДОП), реализуемых в различных функциональных базисах, процедуры линейной алгебры, линейной и нелинейной фильтрации. Указанные процедуры и быстрые алгоритмы их реализации рассматриваются в данном учебном пособии.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники