Структурная устойчивость систем
Если неустойчивую систему можно привести в устойчивое состояние изменением ее параметров, то такая система называется структурно-устойчивой. Если никакое изменение параметров системы не приводит ее в устойчивое состояние, то такая система называется структурно-неустойчивой. Поскольку задача конструктора системы сводится к созданию работоспособной системы (т.е. устойчивой системы), то необходимы способы обеспечения устойчивости структурно-неустойчивых систем.
Р ассмотрим пример системы, которая задана структурной схемой, приведенной на рис. 94. Система состоит из двух инерционных звеньев и одного интегрирующего звена. Все звенья соединены последовательно.
Исследуем устойчивость этой системы, используя, например, критерий Найквиста. Передаточная функция разомкнутой системы
, где коэффициент усиления системы.
Частотную передаточную функцию определим по передаточной функции и представим в виде выражений для модуля и аргумента:
, .
АФЧХ системы обладает следующими особенностями: при , , а при , .
Г рафик АФЧХ показан на рис. 95. Пунктиром показана частотная характеристика при большом коэффициенте усиления системы K. Замкнутая система в этом случае неустойчива, поскольку годограф W(j) охватывает контрольную точку (-1,j0).
При уменьшении коэффициента усиления системы K годограф "стягивается" к началу координат и можно выбрать такое значение коэффициента усиления K, при котором замкнутая система становится устойчивой (годограф, показанный сплошной линией на рис. 95).
Следовательно, рассматриваемая система является структурно-устойчивой системой. Полуокружность, показанная пунктиром на рис. 95, необходима для условного замыкания АФЧХ астатической системы при использовании критерия устойчивости Найквиста.
Д ругой пример замкнутой системы показан структурной схемой на рис. 96. Эта система состоит из инерционного звена и двух интегрирующих звеньев, включенных последовательно.
Передаточная функция системы
.
Соответственно модуль и аргумент частотной передаточной функции
, .
При , и при , .
АФЧХ системы показана на рис. 97. Такая система будет неустойчивой при любых значениях K, поскольку контрольная точка (-1,j0) всегда будет находиться внутри контура кривой. Не сможет изменить полученную картину и изменение постоянной времени T1. Рассматриваемая система является структурно-неустойчивой, поскольку привести её к устойчивости изменением параметров системы невозможно.
Сделать структурно-неустойчивую систему устойчивой можно только путём изменения структуры системы. Приведение к устойчивости структурно-неустойчивой системы возможно двумя способами:
введением дополнительных обратных связей, охватывающих неустойчивые звенья.
введением дополнительных звеньев (стабилизирующих звеньев) в структуру системы.
Если в рассматриваемую систему ввести дополнительно реальное дифференцирующее звено с передаточной функцией
,
то передаточная функция системы примет вид
.
Новая передаточная функция соответствует структурно-устойчивой системе, как это было видно из предыдущего примера. Дополнительно введённое реальное дифференцирующее звено выполнило функцию стабилизирующего звена.
Сложная система автоматического управления, имеющая в своем составе несколько простых замкнутых систем, является многоконтурной системой. Многоконтурная система будет структурно-устойчивой, если структурно-устойчивы все простые составляющие ее системы.
- А.В. Федотов теория автоматического управления
- Список сокращений
- Основы теории автоматического управления Введение
- Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- Система регулирования скорости вращения двигателей
- Автоматизированный электропривод
- Система терморегулирования
- Следящая система автоматического управления
- Система автоматического регулирования уровня
- Обобщённая структура автоматической системы
- Принципы автоматического управления
- Математическая модель автоматической системы
- Пространство состояний системы автоматического управления
- Классификация систем автоматического управления
- Структурный метод описания сау
- Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- Линеаризация дифференциального уравнения системы
- Форма записи линеаризованных дифференциальных уравнений
- Преобразование Лапласа
- Свойства преобразования Лапласа
- Пример исследования функционального элемента
- Передаточная функция
- Типовые воздействия
- Гармоническая функция.
- Временные характеристики системы автоматического управления
- Частотная передаточная функция системы автоматического управления
- Частотные характеристики системы автоматического управления
- Типовые звенья
- Безынерционное (усилительное) звено.
- Инерционное звено (апериодическое звено первого порядка).
- Колебательное звено.
- Интегрирующее звено.
- 5. Дифференцирующее звено.
- Неустойчивые звенья
- Соединения структурных звеньев
- Преобразования структурных схем
- Передаточная функция замкнутой системы автоматического управления
- Передаточная функция замкнутой системы по ошибке
- Построение частотных характеристик системы
- Устойчивость систем автоматического управления Понятие устойчивости
- Условия устойчивости системы автоматического управления
- Теоремы Ляпунова об устойчивости линейной системы
- Критерии устойчивости системы Общие сведения
- Критерий устойчивости Гурвица
- Критерий устойчивости Найквиста
- Применение критерия к логарифмическим характеристикам
- Критерий устойчивости Михайлова
- Построение области устойчивости системы методом d-разбиения
- Структурная устойчивость систем
- Качество системы автоматического управления Показатели качества
- Точность системы автоматического управления Статическая ошибка системы
- Вынужденная ошибка системы
- Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- Решение уравнения системы операционными методами
- Численное решение дифференциального уравнения
- Моделирование переходной характеристики
- Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- Интегральные оценки качества процесса
- Оценка качества по частотным характеристикам Основы метода
- Оценка качества системы по частотной характеристике
- Оценка колебательности системы
- Построение вещественной частотной характеристики
- Оценка качества сау по логарифмическим характеристикам
- Синтез системы автоматического управления Постановка задачи синтеза системы
- Параметрический синтез системы
- Структурный синтез системы Способы коррекции системы
- Построение желаемой логарифмической характеристики системы
- Синтез последовательного корректирующего звена
- Синтез параллельного корректирующего звена
- Другие методы синтеза систем автоматического управления
- Реализация систем автоматического управления Промышленные регуляторы
- Особенности реализации промышленных регуляторов
- Настройка промышленных регуляторов
- Управление по возмущению
- Комбинированное управление
- Многосвязные системы регулирования
- Обеспечение автономности управления
- Библиографический список
- Предметный указатель
- Содержание