Кодування чисел в мп-системах
Вихідні дані, а також проміжні результати в МП-системах можуть бути додатними і від’ємними. Для зображення знаку числа в розрядній сітці перед старшим цифровим розрядом вводиться додатковий знаковий розряд, в який для зображення додатного числа заноситься нуль, а для зображення від’ємного числа – одиниця (див. форму зображення числа з фіксованою крапкою). Для кодування чисел в МП-системах використовують спеціальні коди – прямий, обернений і додатковий.
Прямий код. Зображення двійкового числа Х в прямому коді [X]пр засноване на представленні його абсолютного значення із закодованим знаком.
У загальному випадку формула для утворення прямого коду двійкового числа Х має вигляд
[X]пр
Прямий код [X]пр додатного числа Х в закодованому вигляді повністю співпадає із записом самого числа: якщо Х = + 0 . х1 х2 … х m , то [X]пр = 0 . х1 х2…х m.
Прямий код [X]пр від’ємного числа – Х в закодованому вигляді має такий запис: якщо Х = – 0 . х1 х2 … х m , то [X]пр = 1 . х1 х2…х m.
Приклади:
Х = +0.11010, [X]пр= 0.11010;
Х = –0.01010, [X]пр= 1.01010.
Відмітимо, що зображення нуля в прямому коді неоднозначне, тобто для тривіальної рівності 0 = + 0 = 0, [+0]пр =0.00…00; [–0]пр = 1.00…00. Отже, в прямому коді нуль може мати два уявлення, які відповідно називаються додатнім і від’ємним машинним нулем.
Прямий код використовується в МП-системах для зберігання додатних і від’ємних чисел в запам’ятовуючих пристроях.
Обернений код. Для спрощення структури МП від’ємні дроби, що представлені в двійковій системі числення, кодуються у вигляді доповнень до 2 або до 2–2 –m (m – кількість розрядів, 2 – основа двійкової системи числення). Код, утворений доповненням до 2, називається додатковим, а код утворений доповненням до 2–2 –m, – оберненим. Обернений код числа Х позначається [X]обр.
Обернений код додатного числа співпадає з його прямим кодом: якщо Х > 0, то [X] обр = [X]пр=Х. Обернений код від’ємного числа утворюється так:
в знаковому розряді записується одиниця;
в цифрових розрядах одиниці замінюються нулями, а нулі – одиницями.
Приклади:
Х = +0.10110, [X] обр = 0.10110;
Х = –0.01001, [X] обр = 1.10110.
Отже, формула для утворення оберненого коду двійкового числа Х має вигляд
[X] обр
в оберненому коді можливі два уявлення нуля: додатній і від’ємний: [+0]обр = [+0.00…0]обр = 0.00…0; [–0]обр = [–0.00…0]обр = 10.00…0 – 0.00…01 = =1.11…11.
Спеціальні коди (обернений і додатковий) дозволяють операцію віднімання в МП замінити операцією додавання, що дає можливість зведення всіх арифметичних операцій до виконання операції додавання.
Приклад: скласти числа Х= + 0.101 і Y= – 0.001 в обернених кодах:
При додаванні кодів одиниця старшого розряду вийшла вліво. В цьому випадку для отримання правильного результату необхідно виконати операцію циклічного переносу. Ця операція полягає в тому, що одиниця, яка вийшла за знаковий розряд, відкидається, а до молодшого розряду числа додається одиниця:
При цьому результат операції додавання додатній, так як в знаковому розряді стоїть 0.
Операція циклічного переносу необхідна тільки тоді, коли одиниця виходить за знаковий розряд. Якщо в знаковому розряді результату стоїть одиниця, то результат операції додавання буде від’ємним.
При використанні цілих чисел формула для утворення оберненого коду має вигляд
[X] обр
де n – число розрядів.
Додатковий код. Додатковий код додатного числа співпадає з його прямим кодом, тобто [X] дод = [X]пр=Х. Додатковий код від’ємного двійкового числа утворюється так:
в знаковому розряді ставиться одиниця;
в усіх цифрових розрядах одиниці замінюються нулями, а нулі – одиницями;
до молодшого розряду числа додається одиниця.
Приклад:
Х = +0.10010, [X] дод = 0.10010;
Х = –0.0110, [X] дод = 1.1001+0.0001=1.1010;
Х = –0.11001, [X] дод = 1.00110+0.00001=1.00111;
Отже, формула для утворення додаткового коду дробового двійкового числа має вид
[X] дод
Аналогічним способом можна отримати формулу для утворення додаткового коду цілого двійкового числа:
[X] дод
де n – число розрядів.
Для отримання зображення нуля можна виконати такі найпростіші перетворення: [+0]дод = [+0.00 … 0]дод = 0; [–0]дод = [–0.00…0]дод = 10.00…0 + X = 10.00…0 + 0.00…0 = 10.00…0, але в розрядній сітці МП нема розряду ліворуч знакового, тому перша цифра числа МП буде втрачена, а в знаковому розряді залишиться 0. Отже, в додатковому коді нуль в МП має єдине уявлення [+0]дод = [–0]дод = 0.00…0.
При складанні в додатковому коді одиниця переносу, що вийшла за знаковий розряд, відкидається і до молодшого розряду числа не одиниця не додається.
Крапка в цифрових пристроях спеціально не зображується. Місце, де повинна знаходитись крапка, визначається розташуванням цифр по відношенню до уявної крапки.
При складанні чисел в МП можуть отримуватись числа, які по абсолютній величині більше за допустиме значення, що призводить до викривлення результатів обчислень. Тому випадки переповнення розрядної сітки повинні негайно виявлятися. Для цього в МП застосовують спеціальні схеми, що фіксують такі випадки і призупиняють рішення.
Приклад 1:
скласти числа Х= + 0.101 і Y= – 0.001 в додаткових кодах:
В цьому прикладі виник перенос одиниці (Р0 = 1) із знакового розряду, який ігнорується. Крім того, виник перенос одиниці (Р1 = 1) із знакового числового розряду в знаковий. Отже, Р0 Р1 = 0, що свідчить про відсутність переповнення розрядної сітки.
Попередня інформація. Символом позначена логічна операція “додавання за модулем 2”.
Приклад 2:
скласти додатні числа Х = 0.101 і Y= 0.100:
В цьому прикладі Р0 = 0; Р1 = 1). Отже, Р0 Р1 = 01 = 1, що свідчить про переповнення розрядної сітки.
- 161 “Електротехніка, електроніка і мікропроцесорна техніка”
- Херсон – 2013 р.
- Лекція 1. Вступ. Основні поняття і співвідношення в електричних колах. План
- Зміст і структура дисципліни.
- Прості кола постійного струму. Електричні схеми, елементи схем.
- Закон Ома для ділянки кола.
- Напруга на клемах джерела.
- Енергетичні співвідношення. Закон Джоуля–Ленца. Баланс потужностей.
- Лекція 2. Режими роботи електричних кіл. Розрахунок кіл постійного струму. План
- Режими роботи електричних кіл.
- Режими холостого ходу і короткого замикання.
- Точки характерних режимів на зовнішній характеристиці джерела.
- Джерело ерс та джерело струму.
- Розрахунок кіл постійного струму. Способи з’єднання споживачів
- З’єднання елементів живлення.
- Послідовне з’єднання елементів.
- Паралельне з’єднання елементів.
- Змішане з’єднання елементів.
- Розрахунок простих кіл електричного струму.
- Розрахунок складних кіл. Закони Кірхгофа.
- Перетворення трикутника опорів в еквівалентну зірку.
- Лекція 3. Методи розрахунку складних електричних кіл. План
- Розрахунок складних кіл постійного струму. Використання законів Кірхгофа для розрахунку складних кіл.
- Метод суперпозиції.
- Метод контурних струмів.
- Метод вузлових напруг.
- Зауваження щодо аналогій з фізичними системами іншої природи.
- Метод еквівалентного генератора.
- Опір r схеми визначається методом еквівалентних перетворень схеми до загального опору відносно клем a, b при відключеному навантаженні і заморочених внутрішніх ерс.
- Лекція 4. Нелінійні опори та перехідні процеси. План
- Нелінійні опори в колах постійного струму. Основні поняття.
- Графічний метод розрахунку простих кіл з нелінійними опорами.
- Коло з двома послідовними нелінійними опорами.
- Коло з двома паралельними нелінійними опорами.
- Змішане з’єднання нелінійних опорів
- Приклад розрахунку схеми стабілізації струму.
- Перехідні процеси в електричних колах Закони комутації
- Загальні принципи аналізу перехідних процесів
- Лекція 5. Основні поняття змінного струму План
- Змінний струм Передмова
- Основні поняття
- Діюче (ефективне, середньоквадратичне) значення.
- Середнє значення змінного струму.
- Зображення синусоїдальних величин векторами Векторна діаграма
- Елементи кіл змінного струму
- Активний опір на змінному струмі.
- Індуктивність на змінному струмі. Котушка індуктивності.
- Котушка індуктивності на змінному струмі
- Конденсатор на змінному струмі.
- Конденсатор на змінному струмі
- Символічний метод
- Нагадування про комплексні числа Форми запису комплексних чисел
- Дії над комплексними числами
- Уявлення параметрів електричного змінного струму через комплексні числа
- Лекція 6. Аналіз кіл синусоїдального струму. План
- Розрахунок кіл синусоїдального струму. Закони Кірхгофа
- Опір і провідність в комплексній формі.
- Активна, реактивна і повна потужність.
- Розрахунок складних кіл змінного струму.
- Значення cos.
- Лекція 7. Електричні коливання. План
- Аналіз електричного стану розгалужених кіл. Коливальний контур.
- Резонанс напруг.
- Резонанс струмів.
- Лекція 8. Трифазні кола. План
- Трифазна система ерс. Передмова
- Устрій генератора трифазного струму
- Незв’язана система трифазних струмів
- Основні схеми з’єднання в трифазних колах з’єднання за схемою «зірка»
- Потужність трифазного кола.
- Розрахунок трифазного кола. Трипровідна система із симетричним навантаженням.
- Чотирипровідна система при несиметричному навантаженні.
- З’єднання за схемою “трикутник” з’єднання споживачів за схемою “трикутник”.
- З’єднання обмоток генератора за схемою «трикутник».
- З’єднання «зірка – трикутник»
- З’єднання «трикутник – трикутник»
- З’єднання «трикутник – зірка»
- Устрій однофазного трансформатора
- Режими роботи трансформатора
- Холостий хід трансформатора
- Навантажений режим трансформатора. Робота трансформатора.
- Рівняння намагнічуючих сил трансформатора.
- Векторна діаграма навантаженого трансформатора.
- Схеми заміщення.
- Лекція 10. Особливості використання трансформаторів.
- Зміна вторинної напруги трансформатора
- Трифазні трансформатори
- Устрій трифазного трансформатора
- Групи з'єднання обмоток трифазного трансформатора.
- Навантажувальна здатність трансформатора Номінальні параметри трансформатора
- Дослід короткого замикання
- Дослід холостого ходу
- Коефіцієнт корисної дії (к.К.Д.) трансформатора.
- Автотрансформатори
- Лекція 11. Асинхронні електричні машини.
- Принцип дії асинхронної машини
- Магнітне поле, що обертається
- Режими роботи асинхронної машини
- Конструкція ротора
- Механічні характеристики асинхронного двигуна.
- Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
- Асинхронний лінійний двигун (лад).
- Однофазний асинхронний двигун.
- Лекція 12. Синхронні генератори.
- ОтриманнясинусоїдальноїЕрс.
- Багатополюсні генератори.
- Робочий процес синхронного генератора Холостий хід.
- Реакція якоря.
- Зовнішня і регулювальна характеристики.
- Синхронний двигун
- Принцип роботи синхронного двигуна.
- Лекція 13. Машини постійного струму. План
- Машини постійного струму.
- Устрій та принцип дії генератора постійного струму
- Магнітна система.
- Ерс генератора.
- Збудження генератора.
- Генератор з паралельним збудженням.
- Реакція якоря.
- Комутація.
- Зовнішня характеристика.
- Виникнення електромагнітного обертаючого моменту.
- Лекція 14. Вступ до електроніки. Напівпровідники.
- Вступ до розділу «Електроніка».
- Електричні властивості напівпровідників. Уявлення про основи зонної теорії твердого тіла.
- Власна провідність.
- Домішкова провідність.
- Лекція 15. Використання властивостей електронно-діркового переходу.
- Напівпровідниковий діод і його застосування. Напівпровідниковий діод
- Спрямляючі діоди
- Схеми спрямовувачів.
- Стабілітрони.
- Варикап.
- Тунельний та інші види діодів.
- Лекція 16. Транзистори.
- Класи транзисторів.
- Устрій та принцип дії біполярного транзистора.
- Режими роботи біполярного транзистора.
- Способи включення та характеристики схем включення.
- Статичні і динамічні характеристики схем включення.
- Хрест-характеристика транзистора
- Лекція 17.Підсилювачі.
- Підсилювачі.
- Характеристики підсилювачів
- Зворотний зв'язок.
- Електронний генератор синусоїдальних електричних коливань
- Лекція 18. Мп – нові масові засоби цифрової техніки
- Вступ до модуля “Мікропроцесорна техніка”.
- Вступ до модуля “Мікропроцесорна техніка”.
- Уявлення про інтегральні схеми
- Уявлення про мікропроцесорні засоби
- Типова структура мікропроцесорного пристрою
- Лекція 19. Арифметичні основи мікропроцесорних систем.
- Загальні відомості про уявлення інформації в мп-системах
- Додаткова інформація
- Кодування чисел в мп-системах
- Лекція 20. Логічні основи мп-систем.
- Логічні операції
- Логічні елементи мп-систем
- За способом кодування двійкових змінних електронними сигналами електронні елементи можуть бути імпульсними, потенціальними, імпульсно-потенціальними, фазовими.
- Лекція 21. Схемна реалізація логічних елементів.
- Схемна реалізація логічних функцій на прикладі функцій “не”, “і”, “або”, 3і–не”, “3або–не” та ін.
- Лекція 22. Тригери.
- Типи тригерів за способом функціонування.
- Синхронний однотактний rs–тригер.
- Синхронний двотактний rs–тригер.
- Лекція 23. Регістри.
- Регістри прийому і передачі інформації.
- Приклади схемної реалізації зсуваючого регістру
- Лекція 24. Виконання порозрядних логічних операцій при передачі інформації між регістрами.
- Виконання порозрядних операцій «логічне додавання», «логічне множення».
- Виконання порозрядної операції «складання за mod 2».
- Лекція 25 Лічильники.
- Лічильник як вузол мп-системи. Призначення та класифікація
- Лічильник з безпосередніми зв’язками з послідовним переносом.
- Лічильник з паралельним переносом.
- Реверсивний лічильник з послідовним переносом.
- Лекція 26. Схеми дешифраторів.
- Дешифратори. Класифікація.
- Лекція 27.Шифратори, мультиплексори та демультиплексори.
- Шифратори і перетворювачі кодів
- Мультиплексори
- Демультиплексор
- Лекція 28.Суматор.
- Суматор як вузол мп-системи. Призначення та класифікація.
- Однорозрядний комбінаційний суматор.
- Однорозрядний накопичуючий суматор.
- Багаторозрядні суматори
- Лекція 29. Пам’ять мікропроцесорних систем.
- Запам’ятовуючі пристрої мікропроцесорних систем. Оперативні запам’ятовуючі пристрої.
- Запам’ятовуючі пристрої мікропроцесорних систем
- Оперативні запам’ятовуючі пристрої
- Постійні запам’ятовуючі пристрої
- Лекція 30. Мікропроцесор.
- Типова структура мікропроцесора.
- Основні сигнали процесора.
- А0а15 – виводи мп, які приєднуються до ша мп-системи;
- D0d7 – двонапрямлені виводи мп, які приєднуються до шд мп-системи;
- Лекція 31. Мікропроцесорні системи.
- Особливості побудови мп-систем
- Мікропроцесорні засоби в системах керування
- Лекція 32. Перетворювачі сигналів.
- Принцип перетворення напруги в цифровий код.
- Аналого-цифрові перетворювачі (ацп).
- Перетворювачі напруги в код.
- Перетворювачі кута повороту в код.
- Цифрово-аналогові перетворювачі.
- Перетворювач коду в напругу.
- Перетворювач коду в кут повороту.
- Література