Синхронний двотактний rs–тригер.
Двотактний RS–тригер на елементах І–НЕ: а) – схема двотактного RS–тригера; б) – умовне графічне позначення.
При передачі інформації між тригерами, яка здійснюється за спільним синхросигналом, важливо, щоб інформація в наступний в ланцюгу тригерів елемент була передана до надходження іншої інформації з попереднього елемента. Короткочасну затримку інформації при передачі забезпечує двотактний принцип обміну інформацією. Схема тригера, побудованого за цим принципом, наведена на рис. (а). Вона складається з двох однотактних RS–тригерів та інвертора в колі синхронізації. При надходженні на вхід RS–тригера синхроімпульсу С = 1 вхідна інформація заноситься тільки в перший однотактний RS–тригер, а другий тригер при цьому буде зберігати інформацію, що відноситься до попереднього періоду представлення. По закінченню дії імпульсу синхронізації (коли С = 0, а = 1) перший RS–тригер перейде в режим зберігання, а другий перепише з нього нове значення стану. На відміну від однотактних тригерів, які змінюють значення вихідного сигналу під час дії синхроімпульсу, двотактний тригер змінить свій стан тільки після закінчення дії імпульсу синхронізації. Тому з двотактних тригерів можна будувати схеми, що мають зв’язки між виходами одних тригерів і синхронними входами інших.
Для встановлення тригера в стан 0 або 1 без використання синхроімпульсів в схему введені додаткові входи і несинхронізованого встановлення. Зв’язки з цими входами показані на рис. а пунктиром.
Схеми RS–тригерів складають основу для побудови інших тригерних схем типу T–, D– і JK–тригерів.
Т–тригер.
Це тригер з лічильним входом (однорозрядний лічильник). Він може бути побудований з використанням двотактного синхронного RS–тригера. Т–тригер реалізує функцію виду
тобто одиничний вхідний сигнал Т повинен міняти стан тригера на протилежний, а нульовий – залишати стан тригера без змін.
Схеми Т–тригера:
а) – схема двотактного несинхронного Т–тригера на основі двотактного RS–тригера; б) – схема синхронного двотактного Т–тригера; в) – умовне графічне позначення двотактного синхронного Т–тригера.
Схема двотактного несинхронного Т–тригера, утвореного з RS–тригера, наведена на рис. а. В цій схемі надходження сигналу Т = 1 на вхід С призводить до запису в двотактний RS–тригер стану, протилежного попередньому. Сигнал на виході тригера зміниться тільки після завершення дії сигналу Т = 1, що виключає виникнення генерації в схемі із зворотнім зв’язком.
На рис. б представлена схема синхронного двотактного Т–тригера, а на рис. в – його умовне позначення. Одиничний вхідний сигнал Т уявляється високою напругою при С = 1. Запис інформації в тригер здійснюється при С = 1, причому зміна стану, як звичайно в двотактних тригерах, відбувається після закінчення дії імпульсу синхронізації С = 1. При Т = 1 стан тригера змінюється на протилежний, а при Т = 0 – не змінюється.
Часова діаграма роботи Т–тригера :
Як видно з часової діаграми Т–тригер можна використовувати як асинхронний тригер з лічильним входом, якщо на інформаційний вхід Т подати константу 1, а логічну змінну подавати на вхід С.
Синхронні і асинхронні тригери з лічильним входом застосовуються в цифрових пристроях і мікропроцесорних системах для побудови схем лічильників.
D–тригер.
D–тригер на основі двотактного RS–тригера: а) – функціональна схема; б) – умовне графічне позначення.
Одним з інтегральних тригерів, що має широке використання, є D–тригер з одним входом. Найпростіший варіант побудови двотактного D–тригера показаний на рис. а. У момент дискретного часу t під дією синхросигналу інформація, що надходить на вхід D, приймається в RS–тригер, але на виході Q з’являється із затримкою на час дії синхросигналу в момент часу t +1 – Q(t + 1) = D(t). Отже D–тригер може використовуватись як синхронний елемент затримки на один такт (на час дії одного синхросигналу). Часова діаграма роботи D–тригера:
D–тригер відповідає RS–тригеру, що працює тільки в режимі встановлення, тобто або з комбінаціями сигналів R = 1 і S = 0, або з комбінаціями сигналів R = 0 і S = 1. Для організації зберігання інформації використовується вхід С (режим зберігання С = 0).
JK–тригер.
Розповсюдженим типом тригера в системах інтегральних логічних елементів є універсальний двотактний JK–тригер а) – схемна реалізація; б) – умовне позначення:
Входи J і K відповідають входам S і R RS–тригера, тобто сигнал 1 на вході J встановлює тригер в стан 1, а сигнал 1 на вході K встановлює його в стан 0 незалежно від попереднього стану. Але на відміну від RS–тригера в JK–тригері сигнали 1 можуть одночасно прийти на входи J і K. При цьому стан тригера завжди буде змінюватись на протилежний, тобто при J = K = 1 схема поводить себе як Т–тригер з лічильним входом. Сигнали J і K можуть бути результатом кон’юнкції кількох сигналів J = J1 J2 J3 і K = K1 K2 K3. Крім того тригер має входи несинхронізованого встановлення і , за допомогою яких при С = 0 тригер можна встановити в стан 1 через подачу сигналів = 1, = 0 або в стан 0 через подачу сигналів = 0, = 1.
Функцію переходів JK–тригера Q(t + 1) можна представити у вигляді булевих функцій від змінних, що відповідають попередньому стану t і вхідним сигналам тригера при = =1 (тобто сигнали на несинхронізованих входах не впливають на стан тригера):
Функціонування JK–тригера може бути описано таблицею переходів. Наводиться таблиця переходів (таблиця 4) при = =1 під дією синхронізованих входів (С = 1).
Таблиця 4. Таблиця переходів JK–тригера.
t | t + 1 | Коментар | |
J | K | Q | |
0 | 0 | Q(t) | Зберігання 0 або 1 |
0 | 1 | 0 | Встановлення 1 |
1 | 0 | 1 | Встановлення 0 |
1 | 1 | | Інверсія стану |
JK–тригер зручний тим, що при різних варіантах підключення його входів можна отримати схеми, що функціонують як D–, T– і RS–тригери. Схеми варіантів включення універсального JK–тригера: а) – як D–тригер; б), в) – як Т–тригер; г) – як RS–тригер
- 161 “Електротехніка, електроніка і мікропроцесорна техніка”
- Херсон – 2013 р.
- Лекція 1. Вступ. Основні поняття і співвідношення в електричних колах. План
- Зміст і структура дисципліни.
- Прості кола постійного струму. Електричні схеми, елементи схем.
- Закон Ома для ділянки кола.
- Напруга на клемах джерела.
- Енергетичні співвідношення. Закон Джоуля–Ленца. Баланс потужностей.
- Лекція 2. Режими роботи електричних кіл. Розрахунок кіл постійного струму. План
- Режими роботи електричних кіл.
- Режими холостого ходу і короткого замикання.
- Точки характерних режимів на зовнішній характеристиці джерела.
- Джерело ерс та джерело струму.
- Розрахунок кіл постійного струму. Способи з’єднання споживачів
- З’єднання елементів живлення.
- Послідовне з’єднання елементів.
- Паралельне з’єднання елементів.
- Змішане з’єднання елементів.
- Розрахунок простих кіл електричного струму.
- Розрахунок складних кіл. Закони Кірхгофа.
- Перетворення трикутника опорів в еквівалентну зірку.
- Лекція 3. Методи розрахунку складних електричних кіл. План
- Розрахунок складних кіл постійного струму. Використання законів Кірхгофа для розрахунку складних кіл.
- Метод суперпозиції.
- Метод контурних струмів.
- Метод вузлових напруг.
- Зауваження щодо аналогій з фізичними системами іншої природи.
- Метод еквівалентного генератора.
- Опір r схеми визначається методом еквівалентних перетворень схеми до загального опору відносно клем a, b при відключеному навантаженні і заморочених внутрішніх ерс.
- Лекція 4. Нелінійні опори та перехідні процеси. План
- Нелінійні опори в колах постійного струму. Основні поняття.
- Графічний метод розрахунку простих кіл з нелінійними опорами.
- Коло з двома послідовними нелінійними опорами.
- Коло з двома паралельними нелінійними опорами.
- Змішане з’єднання нелінійних опорів
- Приклад розрахунку схеми стабілізації струму.
- Перехідні процеси в електричних колах Закони комутації
- Загальні принципи аналізу перехідних процесів
- Лекція 5. Основні поняття змінного струму План
- Змінний струм Передмова
- Основні поняття
- Діюче (ефективне, середньоквадратичне) значення.
- Середнє значення змінного струму.
- Зображення синусоїдальних величин векторами Векторна діаграма
- Елементи кіл змінного струму
- Активний опір на змінному струмі.
- Індуктивність на змінному струмі. Котушка індуктивності.
- Котушка індуктивності на змінному струмі
- Конденсатор на змінному струмі.
- Конденсатор на змінному струмі
- Символічний метод
- Нагадування про комплексні числа Форми запису комплексних чисел
- Дії над комплексними числами
- Уявлення параметрів електричного змінного струму через комплексні числа
- Лекція 6. Аналіз кіл синусоїдального струму. План
- Розрахунок кіл синусоїдального струму. Закони Кірхгофа
- Опір і провідність в комплексній формі.
- Активна, реактивна і повна потужність.
- Розрахунок складних кіл змінного струму.
- Значення cos.
- Лекція 7. Електричні коливання. План
- Аналіз електричного стану розгалужених кіл. Коливальний контур.
- Резонанс напруг.
- Резонанс струмів.
- Лекція 8. Трифазні кола. План
- Трифазна система ерс. Передмова
- Устрій генератора трифазного струму
- Незв’язана система трифазних струмів
- Основні схеми з’єднання в трифазних колах з’єднання за схемою «зірка»
- Потужність трифазного кола.
- Розрахунок трифазного кола. Трипровідна система із симетричним навантаженням.
- Чотирипровідна система при несиметричному навантаженні.
- З’єднання за схемою “трикутник” з’єднання споживачів за схемою “трикутник”.
- З’єднання обмоток генератора за схемою «трикутник».
- З’єднання «зірка – трикутник»
- З’єднання «трикутник – трикутник»
- З’єднання «трикутник – зірка»
- Устрій однофазного трансформатора
- Режими роботи трансформатора
- Холостий хід трансформатора
- Навантажений режим трансформатора. Робота трансформатора.
- Рівняння намагнічуючих сил трансформатора.
- Векторна діаграма навантаженого трансформатора.
- Схеми заміщення.
- Лекція 10. Особливості використання трансформаторів.
- Зміна вторинної напруги трансформатора
- Трифазні трансформатори
- Устрій трифазного трансформатора
- Групи з'єднання обмоток трифазного трансформатора.
- Навантажувальна здатність трансформатора Номінальні параметри трансформатора
- Дослід короткого замикання
- Дослід холостого ходу
- Коефіцієнт корисної дії (к.К.Д.) трансформатора.
- Автотрансформатори
- Лекція 11. Асинхронні електричні машини.
- Принцип дії асинхронної машини
- Магнітне поле, що обертається
- Режими роботи асинхронної машини
- Конструкція ротора
- Механічні характеристики асинхронного двигуна.
- Баланс активних потужностей асинхронного двигуна. Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
- Асинхронний лінійний двигун (лад).
- Однофазний асинхронний двигун.
- Лекція 12. Синхронні генератори.
- ОтриманнясинусоїдальноїЕрс.
- Багатополюсні генератори.
- Робочий процес синхронного генератора Холостий хід.
- Реакція якоря.
- Зовнішня і регулювальна характеристики.
- Синхронний двигун
- Принцип роботи синхронного двигуна.
- Лекція 13. Машини постійного струму. План
- Машини постійного струму.
- Устрій та принцип дії генератора постійного струму
- Магнітна система.
- Ерс генератора.
- Збудження генератора.
- Генератор з паралельним збудженням.
- Реакція якоря.
- Комутація.
- Зовнішня характеристика.
- Виникнення електромагнітного обертаючого моменту.
- Лекція 14. Вступ до електроніки. Напівпровідники.
- Вступ до розділу «Електроніка».
- Електричні властивості напівпровідників. Уявлення про основи зонної теорії твердого тіла.
- Власна провідність.
- Домішкова провідність.
- Лекція 15. Використання властивостей електронно-діркового переходу.
- Напівпровідниковий діод і його застосування. Напівпровідниковий діод
- Спрямляючі діоди
- Схеми спрямовувачів.
- Стабілітрони.
- Варикап.
- Тунельний та інші види діодів.
- Лекція 16. Транзистори.
- Класи транзисторів.
- Устрій та принцип дії біполярного транзистора.
- Режими роботи біполярного транзистора.
- Способи включення та характеристики схем включення.
- Статичні і динамічні характеристики схем включення.
- Хрест-характеристика транзистора
- Лекція 17.Підсилювачі.
- Підсилювачі.
- Характеристики підсилювачів
- Зворотний зв'язок.
- Електронний генератор синусоїдальних електричних коливань
- Лекція 18. Мп – нові масові засоби цифрової техніки
- Вступ до модуля “Мікропроцесорна техніка”.
- Вступ до модуля “Мікропроцесорна техніка”.
- Уявлення про інтегральні схеми
- Уявлення про мікропроцесорні засоби
- Типова структура мікропроцесорного пристрою
- Лекція 19. Арифметичні основи мікропроцесорних систем.
- Загальні відомості про уявлення інформації в мп-системах
- Додаткова інформація
- Кодування чисел в мп-системах
- Лекція 20. Логічні основи мп-систем.
- Логічні операції
- Логічні елементи мп-систем
- За способом кодування двійкових змінних електронними сигналами електронні елементи можуть бути імпульсними, потенціальними, імпульсно-потенціальними, фазовими.
- Лекція 21. Схемна реалізація логічних елементів.
- Схемна реалізація логічних функцій на прикладі функцій “не”, “і”, “або”, 3і–не”, “3або–не” та ін.
- Лекція 22. Тригери.
- Типи тригерів за способом функціонування.
- Синхронний однотактний rs–тригер.
- Синхронний двотактний rs–тригер.
- Лекція 23. Регістри.
- Регістри прийому і передачі інформації.
- Приклади схемної реалізації зсуваючого регістру
- Лекція 24. Виконання порозрядних логічних операцій при передачі інформації між регістрами.
- Виконання порозрядних операцій «логічне додавання», «логічне множення».
- Виконання порозрядної операції «складання за mod 2».
- Лекція 25 Лічильники.
- Лічильник як вузол мп-системи. Призначення та класифікація
- Лічильник з безпосередніми зв’язками з послідовним переносом.
- Лічильник з паралельним переносом.
- Реверсивний лічильник з послідовним переносом.
- Лекція 26. Схеми дешифраторів.
- Дешифратори. Класифікація.
- Лекція 27.Шифратори, мультиплексори та демультиплексори.
- Шифратори і перетворювачі кодів
- Мультиплексори
- Демультиплексор
- Лекція 28.Суматор.
- Суматор як вузол мп-системи. Призначення та класифікація.
- Однорозрядний комбінаційний суматор.
- Однорозрядний накопичуючий суматор.
- Багаторозрядні суматори
- Лекція 29. Пам’ять мікропроцесорних систем.
- Запам’ятовуючі пристрої мікропроцесорних систем. Оперативні запам’ятовуючі пристрої.
- Запам’ятовуючі пристрої мікропроцесорних систем
- Оперативні запам’ятовуючі пристрої
- Постійні запам’ятовуючі пристрої
- Лекція 30. Мікропроцесор.
- Типова структура мікропроцесора.
- Основні сигнали процесора.
- А0а15 – виводи мп, які приєднуються до ша мп-системи;
- D0d7 – двонапрямлені виводи мп, які приєднуються до шд мп-системи;
- Лекція 31. Мікропроцесорні системи.
- Особливості побудови мп-систем
- Мікропроцесорні засоби в системах керування
- Лекція 32. Перетворювачі сигналів.
- Принцип перетворення напруги в цифровий код.
- Аналого-цифрові перетворювачі (ацп).
- Перетворювачі напруги в код.
- Перетворювачі кута повороту в код.
- Цифрово-аналогові перетворювачі.
- Перетворювач коду в напругу.
- Перетворювач коду в кут повороту.
- Література