55)Синтез нерекурсивных фильтров с использованием окон
Нерекурсивные фильтры – это фильтры без обратной связи. Нерекурсивные фильтры являются КИХ – фильтрами, т.е. имеют конечную импульсную характеристику. Нерекурсивные фильтры всегда устойчивы. Так как в основном уравнении дискретного фильтра обратные связи отсутствуют, то все коэффициенты am равны нулю m=0,1…
Поэтому передаточная функция нерекурсивного фильтра имеет следующий вид
(1). Передаточная функция выражается через импульсную характеристику (2). Сравнивая формулы (1) и (2) мы приходим к выводу, что сумма (2) является конечной суммой. Кроме того, элементы импульсной характеристики h(n) совпадают с коэффициентами bn основного уравнения фильтра . Число N определяет порядок нерекурсивного фильтра. Таким образом, если порядок нерекурсивного фильтра равняется N , то его импульсная характеристика имеет N+1 отличных от нуля элементов.
Так как коэффициенты основного уравнения определяют конструкцию фильтра, то для синтеза нерекурсивного фильтра с заданной частотной характеристикой, необходимо знать нужную импульсную характеристику.
Таким образом, если мы имеем нерекурсивный фильтр порядка N, и нам известна импульсная характеристика h(n) , то частотную характеристику фильтра мы вычисляем с помощью суммы (3). Такая задача называется прямой задачей.
Синтез фильтра является обратной задачей. По заданной частотной характеристике K(f) и заданному порядку фильтра N , мы пытаемся подобрать элементы импульсной характеристики h(n) , такие, чтобы подстановка их в сумму (3) дала правильную частотную характеристику.
Увеличение порядка фильтра N означает увеличение электрических элементов в конструкции фильтра. Поэтому N является всегда конечным числом, большим или меньшим в зависимости от конструкции фильтра. Поэтому, используя конечное число элементов импульсной характеристики h(n) невозможно точно получить заданную частотную характеристику K(f) с помощью суммы (3).
Таким образом, сумма (3) может дать нам только приближенный результат. Поэтому задача различных методы синтеза фильтров состоит в выборе элементов импульсной характеристики, дающих лучший приближенный результат.
Метод окон является одним их таких методов синтеза нерекурсивных фильтров.
В основе этого метода лежит прямое и обратное преобразование Фурье дискретного сигнала. . Искомую частотную характеристику задаем в интервале от 0 до F , где F -частота Найквиста.
- 1)Классификация сигналов по способу обработки, по физическим свойствам.
- 2)Спектральное представление сигналов
- 3)Ачх и фчх действительных сигналов
- 4)Примеры спектров некоторых сигналов
- 5) Прямоугольный импульс, задержанный во времени
- 6)Дуальность преобразования Фурье
- 7) Односторонний экспоненциальный импульс
- 8)Система функций Радемахера. Свойства
- 9) Система функций Уолша
- 10) Система функций Хаара
- 11)Тригонометрические ряды Фурье
- 12)Комплексная форма рядов Фурье
- 13)Спектральный анализ и преобразование Фурье
- 18)Спектр дискретного сигнала
- 19)Свойства спектра дискретного сигнала.
- 20)Спектральные свойства сигналов трех основных типов
- 21)Соотношение между спектрами непрерывного и дискретного сигналов
- 22)Теорема Котельникова
- 23)Дискретное преобразование Фурье
- 24)Свойства дискретное преобразование Фурье. Симметрия. Линейность
- 25)Свойства дискретное преобразование Фурье. Циклический сдвиг влево
- 26)Свойства дискретное преобразование Фурье
- 27)Быстрое преобразование Фурье (бпф)
- 28)Аналоговая обработка сигналов
- 29)Характеристики линейных систем
- 30)Условие физической реализуемости системы
- 31)Комплексный коэффициент передачи
- 32)Основное уравнение лпп системы
- 33)Нули и полюсы функция передачи системы
- 34)Z – преобразование
- 35)Обращение z – преобразования. Теорема о вычетах
- 36)Основное уравнение лдф и передаточная функция
- 37)Соединения линейных дискретных фильтров
- 38)Структурные схемы лдф. Прямая форма структурной схемы лдф
- 39)Прямая каноническая форма лдф
- 40)Свойства линейных дискретных фильтров. Устойчивость лдф
- 41)Частотная характеристика лдф
- 42)Ких и бих фильтры
- 43)Рекурсивные и нерекурсивные фильтры и их связь с ких и бих фильтрами
- 44)Аналоговые фильтры
- 46)Фильтр Чебышева первого рода
- 47)Три основных условия синтеза фильтров.
- 48)Фильтр Чебышева второго рода
- 49)Эллиптический фильтр
- 50)Преобразование фильтров. Изменение частоты среза фнч
- 51)Преобразование фнч в фильтр высокой частоты фвч
- 52)Преобразование фнч в полосовой фильтр
- 53)Преобразование фнч в режекторный фильтр
- 54)Метод билинейного - преобразования
- 55)Синтез нерекурсивных фильтров с использованием окон
- 56)Прямоугольное окно. Треугольное окно.
- 57)Окно Бартлетта. Окно Хана.
- 58)Окно Хэмминга. Окно Блэкмена.
- 59)Окно Кайзера. Окно Чебышева.
- Цифровая обработка сигналов