3.1. Класифікація дискретних систем
Головним напрямком розвитку систем автоматизації в останні десятиріччя є широке використання засобів обчислювальної техніки та мікропроцесорних пристроїв, об’єднаних в мережі різного рівня і призначення. За характером сигналів такі системи є дискретними, тобто ці сигнали є послідовністю імпульсів, які несуть в собі всю необхідну інформацію. Дискретні системи мають ряд переваг перед неперервними (аналоговими):
можливість багатоточкового керування з багатократним використанням ліній зв’язку, по яких одночасно передається множина сигналів за рахунок їх особливостей: імпульс – пауза і т.д.;
підвищена перtкодостійкість за рахунок того, що перешкода діє лише на протязі імпульсу, який може бути як завгодно коротким. В паузах між імпульсами система розімкнена і перешкода на неї не діє.
В дискретних системах об’єкт керування, як правило, неперервний за своєю природою, тому відбувається перетворення неперервного сигналу в дискретний, тобто його квантування.
Вид квантування сигналів лежить в основі класифікації дискретних систем.
Рис.3.1. Види квантування сигналу.
В релейних (позиційних) системах відбувається квантування за рівнем (рис.3.1,а), коли виділяється значення , і для цих значень визначається рівень неперервного сигналу.
В імпульсних системах здійснюється квантування за часом при (рис.3.1,б). Для збереження певного рівня сигналу між сусідніми точками служать екстраполятори: нульового порядку (зберігають сигнал постійним); першого та другого порядків (змінюють сигнал за лінійним чи нелінійним законами).
В цифрових системах здійснюється змішане квантування (рис.3.1,в) – за часом та за рівнем ( ). Значення квантового сигналу береться на перетині відповідних ліній.
- Рецензент б.М. Гончаренко, д-р техн. Наук
- Частина друга
- Загальні положення ................................................................................
- Контрольні запитання
- Нелінійні системи
- Особливості нелінійних систем
- Типові нелінійності автоматичних систем
- Типові нелінійності з однозначними характеристиками
- Метод фазових траєкторій
- 1.4. Проходження випадкового сигналу через нелінійну ланку. Статистична лінеаризація
- 1.5. Гармонічна та вібраційна лінеаризація нлс
- 1.6. Методи дослідження стійкості нелінійних систем
- 1.7. Методи дослідження режимів роботи та якості нелінійних систем
- Підвищення якості автоматичних систем керування. Особливі системи.
- Корекція динамічних властивостей аср
- Багатоконтурні системи
- Спеціальні системи
- Контрольні запитання
- 3. Дискретні системи
- 3.1. Класифікація дискретних систем
- 3.2. Релейні (позиційні) системи
- Перехідні процеси в релейних системах
- 3.3. Лінійні імпульсні системи
- 3.2.1. Загальна характеристика імпульсних систем (іс)
- 3.3.2 Функціональна та алгоритмічна структури іс з аім
- 3.3.3. Математичний опис імпульсних систем з аім
- 3.3.4 Стійкість та якість імпульсних систем
- 3.4 Цифрові системи
- 4. Оптимальні системи
- 4.1. Загальні положення
- 4.2. Критерії оптимальності та обмеження в задачах оптимального керування об’єктами
- 4.3. Методи оптимізації
- 4.4. Синтез оптимальних систем
- 5. Адаптивні системи автоматичного керування
- 5.1. Загальні положення
- 5.2. Адаптивні системи з еталонними моделями та ідентифікаторами
- 5.3. Екстремальні автоматичні системи
- 5.4 Системи із саморганізацією
- Основна література
- Додаткова література