logo search
Конспект лекций Комп схем и АК 2011

2.2. Простейшие модели логических элементов и система их параметров

Даже самые сложные преобразования цифровой информации, в конечном счете, сводятся к простейшим операциям над логическими переменными 0 и 1. Такие операции реализуются логическими элементами в соответствии с формулами алгебры логики.

В реальных условиях логическим переменным 0 и 1 соответствуют, как правило, различным уровням напряжения: U0 и U1. Переход от логических переменных к электрическим параметрам ставит вопрос о логических соглашениях. Необходимо условиться, какой из двух уровней напряжения принять за U0 и какой за U1. Существуют соглашения положительной (позитивной) и отрицательной (негативной) логики. Принято считать, что в положительной логике U1> U0, а в отрицательной U1< U0. Необходимо понимать, что, в зависимости от принятого логического соглашения, один и тот же логический элемент выполняет различные логические операции. Переход от операции в положительной логике к операции в отрицательной производится инвертированием всех переменных.

В дальнейшем, если не будет специально оговорено, будем пользоваться соглашениями положительной логики.

Одни и те же преобразования логических переменных можно задать в различных формах (базисах): с помощью операций И, ИЛИ, НЕ (булевский базис), операции И-НЕ (базис Шеффера), операции ИЛИ-НЕ (базис Пирса), а также многими другими способами. Выбора базиса зависит от простоты реализации той или иной логической функции с помощью электрических схем данной схемотехнологии. Чаще всего встречаются базисы Шеффера и Пирса. В различных сериях стандартных ИС наряду с базовыми логическими элементами обычно имеется и ряд других, выполняющих другие логические операции.

Для правильного проектирования и эксплуатации цифровых устройств (ЦУ) необходимо знать систему параметров логических элементов (статических и динамических).

К важнейшим статическим параметрам относятся четыре значения напряжения и четыре значения тока:

Для нормальной работы элемента требуется, чтобы напряжение, соответствующее лог. «1», было достаточно высоким, а напряжение лог. «0» - достаточно низким. Эти требования задаются параметрами Uвх.1min и Uвх.0max. Входные напряжения данного элемента есть выходные напряжения предыдущего (источника сигналов). Уровни, гарантируемые на выходе элемента при соблюдении допустимых нагрузочных условий, задаются параметрами Uвых.1min и Uвых.0max. Как правило, выходные уровни несколько «лучше» входных, что обеспечивает определенную помехоустойчивость элемента. Для уровня U1 опасны отрицательные помехи, снижающие его, причем уровень допустимой статической помехи (т.е. помеха любой длительности) д.б. не выше U-пом= Uвых.1min - Uвх.1min. Для уровня U0 опасны положительные, уровень допустимой статической помехи которой, д.б. не выше U+пом= Uвых.0max - Uвх.0max.

При высоком уровне выходного напряжения из элемента-источника ток вытекает, цепи нагрузки этот ток поглощают. При низком уровне выходного напряжения элемента-источника ток нагрузки втекает в этот элемент из входных цепей элемента-приемника. Зная токи Iвых.0max и Iвых.1max, характеризующие возможности элемента-источника сигнала и токи Iвх.0max и Iвх.1max, потребляемые элементами-приемниками, можно контролировать соблюдение нагрузочных ограничений, обязательное для всех элементов ЦУ.

Быстродействие относится к наиболее важным динамическим параметрам логических элементов (ЛЭ). Быстродействие определяется скоростями их перехода из одного состояния в другое. Быстродействие ЦУ определяется задержками сигналов, как в

ЛЭ, так и в цепях их межсоединений.

Рис. 2.4. Временные диаграммы процесса переключения ЛЭ

Временные диаграммы переключения инвертирующего ЛЭ (рис. 2.4) показывают длительности характерных этапов переходных процессов, отсчитываемые по, так называемым, измерительным уровням. Моментом изменения логического сигнала считают момент достижения одного из логических уровней. Часто за пороговый уровень принимают середину логического перепада сигнала, т.е. 0,5(U0+U1). Иногда пороговый уровень указывается более точно в паспортных данных элемента. На временных диаграммах показаны задержки распространения сигнала при изменении выходного напряжения элемента от U1 до U0 и обратно (t10+t01). Очень часто для упрощения расчетов пользуются усредненным значением задержки распространения сигнала tз=0,5(t10+t01).

При разработке цифрового устройства (ЦУ) требуется оценить его мощность потребления, чтобы сформулировать требования к источникам питания и конструкции теплоотвода. При этом суммируются мощности, рассеиваемые логическими и другими элементами схемы. Мощности, потребляемые ЛЭ, подразделяют на статические и динамические. Статическая мощность потребляется ЛЭ, который не переключается. При переключении потребляется дополнительная динамическая мощность, которая пропорциональна частоте переключения. Таким образом, полная мощность зависит от частоты переключения, что и следует учитывать при ее подсчете.