27.5.4. Передача данных и согласование кэш-памяти
Более детально процесс передачи данных с применением сети ANet показан на рис. 27.18.
Рис.27.18. Процесс передачи данных с использованием сети ANet
Сообщения ядер достигают хаба, который, в свою очередь, пересылает их в сеть ONet на своей уникальной длине волны. Это позволяет двум хабам передавать данные одновременно без интерференции. ONet состоит из нескольких световодов: 64 для данных, 1 для управления и несколько для метаданных. Световоды метаданных служат для указания типа передаваемого сообщения (чтение памяти, данные и пр.) или как тэг сообщения (для устранения двусмысленности при нескольких сообщениях от одного источника). Хаб приемника принимает оба значения последовательно в FIFO-буфер, связанный с конкретным отправителем. Затем данные пересылаются вычислительным ядрам через BNet. Оптическая часть позволяет эффективно реализовывать широковещательную передачу с большей скоростью и меньшими затратами на регенерацию сигнала.
Ядра в АТАС — простые процессоры с кэшем данных и команд первого уровня. Когерентность кэшей поддерживается при помощи протокола, известного как ACKwise. Кэши поддерживают когерентность при помощи протокола распределенных директорий MOESI.
Директории распределены равномерно между ядрами, более того, каждое ядро является "домом" для определенного пула адресов (распределяется статически). Рис 27.19 представляет три ядра, находящиеся в различных кластерах. Каждое ядро содержит процессор, кэш данных и директории кэша. Для примера (рис. 27.19) предположим, что обращение к директории кэша всегда приводит к промаху (необходимости синхронизации кэша). Стрелками на рисунке обозначены типовые операции по согласованию кэшей: промах по записи по адресу А ядром а. В данном примере ядро б является "домом" адреса А, и начальное состояние адреса А в кэше — "занято" (O-state) ядром с. Трафик по согласованию кэшей передается по сети ANet. Последовательность действий для согласования кэшей для данного случая будет следующей:
Рис.27.19. Пример согласования кэшей различных ядер
процессор в ядре а пытается осуществить запись по адресу А и получает ошибку записи;
ядро а посылает запрос на запись ядру б, к которому относится адрес А;
ядро б не имеет данных в кэше, но указывается, что этот адрес занят ядром с. Ядро б посылает запрос на запись по этому адресу от имени ядра а;
ядро с пересылает данные адреса А ядру а и обновляет состояние кэша для этого адреса до "недействительный";
ядро с посылает ACK-сигнал в директорию ядра б;
линия кэша, содержащая адрес А, обновляется на ядре а, и линия получает статус "модифицирована";
процессор ядра а производит запись по адресу А.
Когда ядрам необходимо обратиться к внешней памяти, они делают это при помощи нескольких встроенных в кристалл контроллеров памяти. Каждый контроллер памяти замещает кластер ядер и, таким образом, имеет свой выделенный оптический хаб. После получения запроса по оптической сети он обращается к внешним DRAM-модулям посредством стандартных линий ввода-вывода. Результаты передаются в оптическую сеть. Изменяя количество контроллеров памяти и количество кластеров, можно на различных АТАС-процессорах достигать различных значений показателей пропускной способности подсистемы памяти и вычислительной мощности. Основная задача контроллера памяти — преобразовать запросы от процессорных ядер в транзакции на шине памяти. Выбор технологии шины, таким образом, не зависит от архитектуры накристальной сети.
Вполне допустим вариант использования оптических интерфейсов как на ввод-вывод, так и для шины памяти. Это даст преимущество в пропускной способности и потребляемой мощности.
Каждый оптический вывод может поддерживать до 64 длин волн со скоростями до 20 ГГц. Скорость передачи данных будет ограничена скоростью работы электронных компонент, управляющих оптическим потоком. Предполагается, что скорость в 5 ГГц вполне может быть достигнута. При этом полоса пропускания оптического вывода может достигать 320 Гб/с (40 Гб/с). Для сравнения, 64-битная DDR3 имеет пиковую пропускную способность 12,8 Гб/с. Поскольку оптическая шина памяти состоит только из одного световода, уменьшается количество выводов, и это при увеличении пропускной способности практически в три раза. Все это де- лает применение оптического ввода-вывода востребованным для АТАС- процессоров с несколькими контроллерами памяти.
Архитектура ориентируется на 11-нм техпроцесс, который, по мнению ее разработчиков, может быть реализован к середине десятилетия (ориентировочно 2012-2016 гг.).
- Министерство образования и науки, молодёжи и спорта украины
- Одесский национальный политехнический университет
- Институт компьютерных систем
- Кафедра информационных систем
- Министерство образования и науки, молодёжи и спорта украины
- Одесский национальный политехнический университет
- Институт компьютерных систем
- Кафедра информационных систем
- Содержание
- Тема1. Формы представления информации 10
- Тема 2. Логические основы построения элементов 16
- Тема 3. Схемотехника комбинационных узлов 29
- Тема 4. Схемотехника цифровых элементов 70
- Тема 5. Схемотехника цифровых узлов 108
- Тема 6. Интегрированные системы элементов 138
- Тема 7. Схемотехника аналоговых узлов 179
- Тема 8. Схемотехника обслуживающих элементов 208
- Тема 14. Структуры микропроцессорных систем 293
- Тема 15. Схемы поддержки мп на системных платах 340
- Тема 16. Некоторые вопросы развития архитектуры эвм 357
- Тема 17. Risk – процессоры 387
- Тема 18. Суперкомпьютеры. Параллельные вычислительные системы 399
- Список литературы 450 Тема1. Формы представления информации Лекция 1. Основные понятия
- Тема 2. Логические основы построения элементов Лекция 2.
- 2.1. Основные понятия, определения и законы Булевой алгебры
- Формы задания Булевой функции
- 2.2. Простейшие модели логических элементов и система их параметров
- 2.3. Типы выходных каскадов цифровых элементов
- 2.4. Системы (серии) логических элементов и их основные характеристики
- 2.5 Контрольные вопросы
- Тема 3. Схемотехника комбинационных узлов Лекция 3
- 3.1 Общие сведения
- 3.2. Шифраторы, дешифраторы и преобразователи кодов: назначения, виды, функционирование, принципы построения
- 3.3. Синтез кс на основе дешифраторов
- 3.4. Мультиплексоры и демультиплексоры
- 3.5. Шинные формирователи
- 3.6 Синтез кс на основе мультиплексоров
- 3.7. Компараторы
- 3.8 Сумматоры
- 3.9. Арифметико-логические устройства
- 3.10. Матричные умножители
- 3.11 Постановка и методы решения задач синтеза комбинационных узлов
- 3.11.1 Синтез комбинационных узлов
- 3.11.2 Основные факторы, которые должны быть учтены при построении принципиальных схем
- 3.11.2.1 Питающие напряжения ис
- 3.11.2.2 Уровни логических сигналов
- 3.11.2.3 Нагрузочная способность
- 3.11.2.4 Коэффициент объединения по входу
- 3.11.2.5 Быстродействие
- 3.11.2.6 Помехоустойчивость
- 3.11.2.7 Рассеиваемая мощность
- 3.11.2.8. Использование элементов, имеющих выходы с третьим состоянием или с открытым коллектором
- 3.12 Критерии оценки качества технической реализации кс
- 3.13 Контрольные вопросы
- Тема 4. Схемотехника цифровых элементов Лекция 4
- 4.1 Последовательностные цифровые схемы
- 4.2. Схемотехника триггерных устройств
- 4.3. Асинхронные триггеры
- 4.4. Синхронные триггеры
- Rs триггер с синхронизацией по уровню
- Синхронный rs триггер с синхронизацией по фронту
- 4.5 Методы построения триггеров одного типа на базе триггеров другого типа
- Проектирование триггеров на основе rs-триггера
- Метод преобразования характеристических уравнений
- Метод сравнения характеристических уравнений
- Использование jk-триггера
- 4.6 Регистры и регистровые файлы
- 4.6.1 Регистры памяти
- 4.6.2 Сдвигающие регистры
- 4.6.3 Универсальные регистры
- 4.7 Счётчики
- 4.7.1 Счетчики с непосредственными связями и последовательным переносом
- 4.7.2 Счетчики с параллельным переносом
- 4.7.3 Реверсивный счетчик с последовательным переносом
- 4.7.4 Двоично-кодированные счётчики с произвольным модулем
- Построение счетчика методом модификации межразрядных связей
- Построение счетчика методом управления сбросом
- 4.8 Распределители тактов
- 4.8.1 Распределители импульсов и распределители уровней
- 4.8.2 Кольцевой регистр сдвига
- 4.8.3 Счётчик Джонсона
- 4.9 Контрольные вопросы
- Тема 5. Схемотехника цифровых узлов Лекция 5
- 5.1 Цифровые автоматы и их разновидности
- 5.2 Абстрактный и структурный автоматы
- 5.3. Способы описания и задания автоматов
- 5.4. Связь между моделями Мура и Мили
- 5.5. Минимизация числа внутренних состояний полностью определенных автоматов
- 5.6. Принцип микропрограммного управления. Понятия об операционном и управляющем автоматах
- Операционные элементы
- 5.7. Граф - схемы алгоритмов (гса) и их разновидности. Способы задания гса, требования к ним
- 5.8. Абстрактный синтез микропрограммных управляющих автоматов Мили и Мура
- 5.8.1. Синтез автомата Мили
- 5.8.2. Синтез автомата Мура
- 5.9. Структурный синтез микропрограммных управляющих автоматов Мили и Мура
- 5.9.1. Структурный синтез автомата Мили
- 5.9.2. Структурный синтез автомата Мура
- 5.10. Синтез автомата Мура на базе регистра сдвига
- 5.11. Контрольные вопросы
- Тема 6. Интегрированные системы элементов Лекция 6. Программируемые логические устройства
- 6.1 Основные физические принципы программирования плм и плис
- 6.1.1 Метод плавких перемычек
- 6.1.2 Метод наращиваемых перемычек
- 6.1.3 Устройства, программируемые фотошаблоном
- 6.1.4 Стираемые программируемые постоянные запоминающие устройства
- 6.1.5. Электрически стираемые программируемые постоянные запоминающие устройства
- 6.1.6. Flash - технология
- 6.1.7. Статическое оперативное запоминающее устройство
- 6.1.8. Сравнительная таблица технологий программирования
- 6.2 Простые и сложные плу
- 6.2.1 Ппзу
- 6.2.2 Программируемые логические матрицы
- 6.2.3. Программируемые матрицы pal и gal
- 6.2.4 Дополнительные программируемые опции
- 6.2.5 Сложные плу
- 6.3. Контрольные вопросы
- Лекция 7. Программируемые логические интегральные схемы
- 7.1 Мелко-, средне- и крупномодульные архитектуры
- 7.2 Логические блоки на мультиплексорах и таблицах соответствия
- 7.3 Таблицы соответствия, распределённое озу, сдвиговые регистры
- 7.4 Конфигурируемые логические блоки, блоки логических символов, секции
- 7.5 Секции и логические ячейки
- 7.6 Конфигурируемые логические блоки clb и блоки логических массивов lab
- 7.7. Контрольные вопросы
- Лекция 8
- 8.1 Дополнительные встроенные функции
- 8.1.1 Схемы ускоренного переноса
- 8.1.2 Встроенные блоки озу
- 8.1.3 Встроенные умножители, сумматоры и блоки умножения с накоплением
- 8.1.4 Аппаратные и программные встроенные микропроцессорные ядра
- 8.2 Дерево синхронизации и диспетчеры синхронизации
- 8.2.1 Дерево синхронизации
- 8.2.2 Диспетчер синхронизации
- 8.3. Системы с перестраиваемой архитектурой
- 8.4. Программируемый пользователем массив узлов
- 8.4.1. Технология picoArray компании picoChip
- 8.4.2 Технология адаптивных вычислительных машин компании QuickSilver
- 8.5. Контрольные вопросы
- Тема 7. Схемотехника аналоговых узлов Лекция 9. Операционные усилители
- 9.1. Идеальный операционный усилитель
- 9.2. Основные схемы включения операционного усилителя
- 9.2.1. Дифференциальное включение
- 9.2.2. Инвертирующее включение
- 9.2.3 Неинвертирующее включение
- 9.3 Функциональные устройства на операционных усилителях
- 9.3.1 Схема масштабирования
- 9.3.2 Схема суммирования
- 9.3.3 Схема интегрирования
- 9.3.4 Схема дифференцирования
- 9.3.5 Источники напряжения, управляемые током
- 9.3.6 Источники тока, управляемые напряжением
- 9.4 Активные электрические фильтры на оу
- 9.5 Схемы нелинейного преобразования на оу
- 9.6 Генераторы сигналов на оу
- 9.7. Контрольные вопросы
- Лекция 10
- 10.1. Изолирующие усилители
- 10.2. Аналоговые компараторы
- 10.3. Источники опорного напряжения
- 10.4. Аналоговые коммутаторы
- 10.5. Оптореле
- 10.6. Устройства выборки-хранения
- 10.7. Цифроаналоговые преобразователи
- 10.8. Аналого-цифровые преобразователи
- 10.9. Контрольные вопросы
- Тема 8. Схемотехника обслуживающих элементов Лекция 11
- 11.1 Сопряжение цифровых микросхем, изготовленных по разным технологиям, и сопряжение с интерфейсами
- 11.2 Управление входами ттл и кмоп
- 11.3 Дискретное управление нагрузкой от элементов ттл и кмоп
- 11.4 Передача цифровых сигналов на небольшие расстояния
- 11.5 Контрольные вопросы
- Тема 9. Источники питания. Схемотехника комбинаторных узлов Лекция 12
- 12.1. Схемотехника линейных стабилизаторов напряжения
- 12.2 Импульсные стабилизаторы напряжения
- 12.3 Инверторные схемы
- 12.4 Контрольные вопросы
- Тема10. Цифровые компьютеры Лекция 13
- 13.1. Принципы действия цифровых компьютеров
- 13.2. Понятие о системе программного (математического) обеспечения эвм
- 13.3. Большие эвм общего назначения
- 13.3.1. Каналы
- 13.3.2. Интерфейс
- 13.4. Малые эвм
- 13.5. Контрольные вопросы
- Тема 11. Запоминающие устройства Лекция 14
- 14.1 Структура памяти эвм
- 14.2 Способы организации памяти
- 14.2.1 Адресная память
- 14.2.2 Ассоциативная память
- 14.2.3 Стековая память (магазинная)
- 14.3. Структуры адресных зу
- 14.3.1. Зу типа 2d
- 14.3.2. Зу типа 3d
- 14.3.3. Зу типа 2d-m
- 14.4 Постоянные зу (пзу, ппзу)
- 14.5. Флэш-память
- 14.6. Контрольные вопросы
- Тема 12. Процессоры Лекция 15
- 15.1 Операционные устройства (алу)
- 15.2 Управляющие устройства
- 15.2.1. Уу с жёсткой логикой
- 15.2.2 Уу с хранимой в памяти логикой
- 15.2.2.1. Выборка и выполнение мк
- 15.2.2.2. Кодирование мк
- 15.2.2.3. Синхронизация мк
- 15.3. Контрольные вопросы
- Тема 13. Универсальные микропроцессоры Лекция 16. Архитектура процессора кр580вм80
- 16.1. Регистры данных
- 16.2. Арифметико-логическое устройство
- 16.3. Регистр признаков
- 16.4. Блок управления
- 16.5. Буферы
- 16.6. Мп с точки зрения программиста
- 16.7. Форматы данных в кр580вм80
- 16.8. Форматы команд в кр580вм80
- 16.9. Способы адресации
- 16.10. Контрольные вопросы
- Лекция 17. Система команд кр580вм80
- 17.1. Пересылки однобайтовые
- 17.2. Пересылки двухбайтовые
- 17.3. Операции в аккумуляторе
- 17.4. Операции в рон и памяти
- 17.5. Команды управления
- 17.6. Контрольные вопросы
- Тема 14. Структуры микропроцессорных систем Лекция 18. Общие принципы
- 18.1. Системный интерфейс микро-эвм. Цикл шины
- 18.2. Промежуточный интерфейс
- 18.3. Принципы организации ввода/вывода информации в микропроцессорную систему
- 18.4. Контрольные вопросы
- Лекция 19. Принципы организации систем прерывания программ
- 19.1. Характеристики систем прерывания
- 19.2. Возможные структуры систем прерывания
- 19.3. Организация перехода к прерывающей программе
- 19.3.1. Реализация фиксированных приоритетов
- 19.3.2. Реализация программно-управляемых приоритетов
- 19.4. Контрольные вопросы
- Лекция 20. Принципы организации систем прямого доступа в память
- 20.1. Способы организации доступа к системной магистрали
- 20.2. Возможные структуры систем пдп
- 20.3. Организация обмена в режиме пдп
- 20.3.1. Инициализация средств пдп
- 20.3.2. Радиальная структура ( Slave dma)
- 20.3.3. Радиальная структура (Bus master dma)
- 20.3.4. Цепочечная структура ( Bus master dma)
- 20.3.5. Принципы организации арбитража магистрали
- 20.4. Микропроцессорная система на основе мп кр580вм80а
- 20.5. Контрольные вопросы
- Тема 15. Схемы поддержки мп на системных платах Лекция 21
- 21.1. Эволюция шинной архитектуры ibm pc
- 21.1.1. Локальная системная шина
- 21.1.2. Шина расширения
- 21.1.2.1. Шина расширения isa
- 21.1.2.2. Шина расширения mca
- 21.1.2.3. Шина расширения eisa
- 21.1.3. Локальные шины расширения
- 21.1.3.1. Локальная шина vesa (vlb)
- 21.1.3.2. Локальная шина pci
- 21.2. Современные схемы поддержки мп на системных платах
- 21.2.1. Чипсет GeForce 9300/9400 фирмы nvidia
- 21.2.3. Чипсет Intel z68 для платформы Socket 1155
- 21.3. Контрольные вопросы
- Тема 16. Некоторые вопросы развития архитектуры эвм Лекция 22
- 22.1. Теги и дескрипторы. Самоопределяемые данные
- 22.2. Методы оптимизации обмена процессор-память
- 22.2.1. Конвейер команд
- 22.2.2. Расслоение памяти
- 22.2.3. Буферизация памяти
- 22.3. Динамическое распределение памяти. Виртуальная память
- 22.3.1. Виртуальная память
- 22.3.2. Сегментно-страничная организация памяти
- 22.4. Контрольные вопросы
- Лекция 23. Защита памяти
- 23.1. Защита отдельных ячеек памяти
- 23.2. Метод граничных регистров
- 23.3. Метод ключей защиты
- 23.4. Алгоритмы управления многоуровневой памятью
- 23.5. Контрольные вопросы
- Тема 17. Risk – процессоры Лекция 24
- 24.1. Общая характеристика risk - процессоров
- 24.2. Arm архитектура
- 24.2.1. Дополнительные технологии
- 24.2.2. Ядро arm7tdmi
- 24.2.3. Семейство arm10 Tumb
- 24.3. Контрольные вопросы
- Тема 18. Суперкомпьютеры. Параллельные вычислительные системы Лекция 25
- 25.1. Смена приоритетов в области высокопроизводительных вычислений
- 25.2. Сферы применения многоядерных процессоров и многопроцессорных вычислительных систем
- 25.3. Классификация архитектур вычислительных систем по степени параллелизма обработки данных
- 25.4. Архитектуры smp, mpp и numa
- 25.5. Организация когерентности многоуровневой иерархической памяти
- 25.6. Pvp архитектура
- 25.7. Контрольные вопросы
- Лекция 26. Кластерная архитектура
- 26.1. Архитектура связи в кластерных системах
- 26.2. Коммутаторы для многопроцессорных вычислительных систем.
- 26.2.1. Простые коммутаторы
- 26.2.2. Составные коммутаторы
- 26.2.2.1. Коммутатор Клоза
- 26.3. Контрольные вопросы
- Лекция 27. Высокопроизводительные многоядерные процессоры для встраиваемых приложений
- 27.1. Процессоры Tile-64/64Pro компании Tilera
- 27.4. Мультипроцессор Cell
- 27.4.1. Общая структура процессора Cell
- 27.4.2. Структура процессорного элемента Power (ppe)
- 27.4.3. Структура spe — "синергичного" процессорного элемента
- 27.5. Альтернативная технология построения многоядерных систем на кристалле — atac
- 27.5.1. Основные идеи архитектуры atac
- 27.5.2. Ключевые элементы технологии атас
- 27.5.3. Структура межъядерных связей
- 27.5.4. Передача данных и согласование кэш-памяти
- 27.6. Контрольные вопросы
- Список литературы