20.4. Микропроцессорная система на основе мп кр580вм80а
Упрощенная структурная схема вычислительного устройства на базе МП I8080 (КР580ВМ80А) представлена на рис. 20.4. Это простейшая микро-ЭВМ минимальной конфигурации, структура которой является частным случаем обобщенной (см. рис. 18.1).
Представленная схема включает все основные функциональные блоки, за исключением источника питания. ПЗУ может быть использовано для хранения программы, а ОП для хранения данных, поступающих от ПУ (через ППУ), а также результатов работы программы. Предполагается, что ОП и ПЗУ охвачены единым полем адресов.
К шинам адреса и данных системной магистрали, даже в простейшей микро-ЭВМ, подключено достаточно много устройств: ОП, ПЗУ, несколько ППУ. Однако нагрузочная способность выходов МП КР580, в силу технологических особенностей, весьма мала. К любому выходу МП допускается подключать не более одного входа микросхемы ТТЛ, поэтому в шины адреса и данных включаются специальные буферы, причем ШД требует двунаправленного буфера. Для построения таких буферов предусмотрены микросхемы шинных формирователей КР580ВА86 и КР580ВА87.
Общие принципы функционирования микропроцессорной системы следующие. Из МП на ША (16 разрядов) выдается адрес очередной команды. В этот момент МП еще «не знает», сколько байт занимает данная команда. Первый байт команды, выбранный из памяти (в частном случае из ПЗУ), пересылается по внутренней ШД в РгК. Выход РгК связан с дешифратором команд, который определяет тип выполняемой операции. При этом к содержимому СчК добавляется 1, т.е. формируется адрес следующего байта, а УУ вырабатывает ряд сигналов, позволяющих выполнить те или иные микрооперации. После этого возможны два варианта дальнейших действий:
Если команда однобайтовая, то она выполняется, а содержимое счетчика адреса (РС) = (РС) + 1 является адресом следующей команды.
Если команда содержит более одного байта (2 или 3) и для ее выполнения требуется вызов дополнительных байтов, то содержимое счетчика адреса команд (РС) = (РС) + 1 является адресом следующего байта той же команды.
Рис.20.4. Упрощённая структурная схема микропроцессорной системы на базе МП КР580ВМ80
Рассмотрим более подробно процесс выполнения команды. Этот процесс разбивается на машинные циклы, которые обозначаются M1...M5. Число циклов в одной команде может быть от одного до пяти. В свою очередь, каждый машинный цикл состоит из тактов, обозначаемых T1...T5. В одном машинном цикле может быть от трех до пяти тактов. Имеется в виду 5 типов тактов, поскольку в каждом такте выполняется определенное действие по реализации машинного цикла. При этом количество тактов как временных интервалов может быть значительно больше за счет тактов Т2, о чем речь пойдет ниже. В каждом машинном цикле производится одно обращение к памяти или ППУ в разных вариантах. Каждый такой вариант обращения называется состоянием цикла. Всего в МП КР580 возможно 10 состояний машинного цикла. Это выборка первого байта команды, чтение из памяти, запись в память, чтение из стека, запись в стек, ввод из ППУ, вывод через ППУ, подтверждение прерывания, подтверждение останова, подтверждение прерывания при останове. При этом первым машинным циклом любой команды всегда является выборка первого байта команды.
Во всех машинных циклах первые три такта (T1,T2,T3) используются для организации обмена с памятью и ППУ. Такты T4 и T5 (если они есть) – для выполнения внутренних операций в МП. Таким образом, процесс выполнения команд состоит из стольких машинных циклов, сколько обращений к памяти или ППУ требуется для ее исполнения.
Рис.20.5. Временная диаграмма цикла М1
На рис. 20.5 представлена временная диаграмма цикла М1 из пяти тактов (первый машинный цикл любой команды). Отсчет тактов производится от положительных фронтов импульса F1. Действия процессора по реализации машинного цикла М1 состоят в следующем:
T1 – содержимое РС выдается на ША, адрес принимается памятью, где начинается чтение байта команды из ячейки.
T2 – проверяется наличие сигнала на входе READY (уровень логической 1). Этот сигнал подается на вход МП через интервал времени, достаточный для завершения процесса чтения из памяти. Если на входе READY сигнал отсутствует (действует логический 0), то МП устанавливается в режим ожидания, в котором каждый следующий такт рассматривается как T2 до тех пор, пока не появится сигнал READY. С приходом этого сигнала МП выходит из режима ожидания и переходит в такт T3.
T3 – байт с ШД принимается в МП и помещается в регистр команд (РгК).
T4 – происходит анализ принятого байта и выяснение потребности в дополнительном обращении к памяти. Если дополнительных обращений не требуется (команда однобайтовая и операнды находятся в регистрах процессора), то в этом же такте или с использованием дополнительного такта T5 выполняются предусмотренные командой микрооперации.
T5 – дополнительный такт.
Если требуется дополнительное обращение к памяти, то после T4 цикл M1 завершается и происходит переход к циклу M2.
Отметим, что КОП всегда находится в первом байте команды. Если команда двух- или трехбайтовая, то в остальных байтах находятся данные или адрес. Содержимое этих байтов помещается в аккумулятор или буферные регистры. Так, например, в команде MOV (запись аккумулятора в ячейку памяти) двухбайтовый адрес, который следует за КОП, помещается в регистровую пару WZ, а затем, при исполнении, он передается через мультиплексор непосредственно в РА и далее через буфер на ША.
В каждом машинном цикле в такте T1 по переднему фронту F2 МП выдает сигнал синхронизации SYNC, т.е. на выходе SYNC появляется уровень логической 1. Одновременно с этим сигналом в такте T1 МП выставляет на ШД 8-разрядное управляющее слово, которое несет в себе полную информацию о микрооперациях в текущем машинном цикле. Так, например, 1 в разряде D0 управляющего слова является сигналом подтверждения прерывания INTA. Наличие 1 в разряде D2 означает, что в данном машинном цикле на ША установлено содержимое указателя стека (регистр SP). Наличие 1 в разряде D3 означает, что МП в состоянии останова. В момент прихода импульса F1, означающего начало такта T2, на схеме "&" (рис. 14.6) вырабатывается импульс, называемый строб состояния. Этот строб разрешает запись управляющего слова с ШД во внешний регистр, названный на схеме фиксатор состояния.
Используя это слово или его часть, специальные логические схемы вырабатывают системные управляющие сигналы для обращения к памяти и ППУ. В общем случае фиксатор состояния и блок логических схем называются системным контроллером. Эти, а также некоторые другие вспомогательные схемы, в частности шинный формирователь, оформлены в виде специальной БИС КР580ВК28. Однако в простейших микроЭВМ часто требуются только 4 управляющих сигнала – R, W, IN, OUT. В связи с этим необходимость в БИС ВК28 отпадает, а используют какой-либо управляемый регистр и 2-3 логические схемы.
- Министерство образования и науки, молодёжи и спорта украины
- Одесский национальный политехнический университет
- Институт компьютерных систем
- Кафедра информационных систем
- Министерство образования и науки, молодёжи и спорта украины
- Одесский национальный политехнический университет
- Институт компьютерных систем
- Кафедра информационных систем
- Содержание
- Тема1. Формы представления информации 10
- Тема 2. Логические основы построения элементов 16
- Тема 3. Схемотехника комбинационных узлов 29
- Тема 4. Схемотехника цифровых элементов 70
- Тема 5. Схемотехника цифровых узлов 108
- Тема 6. Интегрированные системы элементов 138
- Тема 7. Схемотехника аналоговых узлов 179
- Тема 8. Схемотехника обслуживающих элементов 208
- Тема 14. Структуры микропроцессорных систем 293
- Тема 15. Схемы поддержки мп на системных платах 340
- Тема 16. Некоторые вопросы развития архитектуры эвм 357
- Тема 17. Risk – процессоры 387
- Тема 18. Суперкомпьютеры. Параллельные вычислительные системы 399
- Список литературы 450 Тема1. Формы представления информации Лекция 1. Основные понятия
- Тема 2. Логические основы построения элементов Лекция 2.
- 2.1. Основные понятия, определения и законы Булевой алгебры
- Формы задания Булевой функции
- 2.2. Простейшие модели логических элементов и система их параметров
- 2.3. Типы выходных каскадов цифровых элементов
- 2.4. Системы (серии) логических элементов и их основные характеристики
- 2.5 Контрольные вопросы
- Тема 3. Схемотехника комбинационных узлов Лекция 3
- 3.1 Общие сведения
- 3.2. Шифраторы, дешифраторы и преобразователи кодов: назначения, виды, функционирование, принципы построения
- 3.3. Синтез кс на основе дешифраторов
- 3.4. Мультиплексоры и демультиплексоры
- 3.5. Шинные формирователи
- 3.6 Синтез кс на основе мультиплексоров
- 3.7. Компараторы
- 3.8 Сумматоры
- 3.9. Арифметико-логические устройства
- 3.10. Матричные умножители
- 3.11 Постановка и методы решения задач синтеза комбинационных узлов
- 3.11.1 Синтез комбинационных узлов
- 3.11.2 Основные факторы, которые должны быть учтены при построении принципиальных схем
- 3.11.2.1 Питающие напряжения ис
- 3.11.2.2 Уровни логических сигналов
- 3.11.2.3 Нагрузочная способность
- 3.11.2.4 Коэффициент объединения по входу
- 3.11.2.5 Быстродействие
- 3.11.2.6 Помехоустойчивость
- 3.11.2.7 Рассеиваемая мощность
- 3.11.2.8. Использование элементов, имеющих выходы с третьим состоянием или с открытым коллектором
- 3.12 Критерии оценки качества технической реализации кс
- 3.13 Контрольные вопросы
- Тема 4. Схемотехника цифровых элементов Лекция 4
- 4.1 Последовательностные цифровые схемы
- 4.2. Схемотехника триггерных устройств
- 4.3. Асинхронные триггеры
- 4.4. Синхронные триггеры
- Rs триггер с синхронизацией по уровню
- Синхронный rs триггер с синхронизацией по фронту
- 4.5 Методы построения триггеров одного типа на базе триггеров другого типа
- Проектирование триггеров на основе rs-триггера
- Метод преобразования характеристических уравнений
- Метод сравнения характеристических уравнений
- Использование jk-триггера
- 4.6 Регистры и регистровые файлы
- 4.6.1 Регистры памяти
- 4.6.2 Сдвигающие регистры
- 4.6.3 Универсальные регистры
- 4.7 Счётчики
- 4.7.1 Счетчики с непосредственными связями и последовательным переносом
- 4.7.2 Счетчики с параллельным переносом
- 4.7.3 Реверсивный счетчик с последовательным переносом
- 4.7.4 Двоично-кодированные счётчики с произвольным модулем
- Построение счетчика методом модификации межразрядных связей
- Построение счетчика методом управления сбросом
- 4.8 Распределители тактов
- 4.8.1 Распределители импульсов и распределители уровней
- 4.8.2 Кольцевой регистр сдвига
- 4.8.3 Счётчик Джонсона
- 4.9 Контрольные вопросы
- Тема 5. Схемотехника цифровых узлов Лекция 5
- 5.1 Цифровые автоматы и их разновидности
- 5.2 Абстрактный и структурный автоматы
- 5.3. Способы описания и задания автоматов
- 5.4. Связь между моделями Мура и Мили
- 5.5. Минимизация числа внутренних состояний полностью определенных автоматов
- 5.6. Принцип микропрограммного управления. Понятия об операционном и управляющем автоматах
- Операционные элементы
- 5.7. Граф - схемы алгоритмов (гса) и их разновидности. Способы задания гса, требования к ним
- 5.8. Абстрактный синтез микропрограммных управляющих автоматов Мили и Мура
- 5.8.1. Синтез автомата Мили
- 5.8.2. Синтез автомата Мура
- 5.9. Структурный синтез микропрограммных управляющих автоматов Мили и Мура
- 5.9.1. Структурный синтез автомата Мили
- 5.9.2. Структурный синтез автомата Мура
- 5.10. Синтез автомата Мура на базе регистра сдвига
- 5.11. Контрольные вопросы
- Тема 6. Интегрированные системы элементов Лекция 6. Программируемые логические устройства
- 6.1 Основные физические принципы программирования плм и плис
- 6.1.1 Метод плавких перемычек
- 6.1.2 Метод наращиваемых перемычек
- 6.1.3 Устройства, программируемые фотошаблоном
- 6.1.4 Стираемые программируемые постоянные запоминающие устройства
- 6.1.5. Электрически стираемые программируемые постоянные запоминающие устройства
- 6.1.6. Flash - технология
- 6.1.7. Статическое оперативное запоминающее устройство
- 6.1.8. Сравнительная таблица технологий программирования
- 6.2 Простые и сложные плу
- 6.2.1 Ппзу
- 6.2.2 Программируемые логические матрицы
- 6.2.3. Программируемые матрицы pal и gal
- 6.2.4 Дополнительные программируемые опции
- 6.2.5 Сложные плу
- 6.3. Контрольные вопросы
- Лекция 7. Программируемые логические интегральные схемы
- 7.1 Мелко-, средне- и крупномодульные архитектуры
- 7.2 Логические блоки на мультиплексорах и таблицах соответствия
- 7.3 Таблицы соответствия, распределённое озу, сдвиговые регистры
- 7.4 Конфигурируемые логические блоки, блоки логических символов, секции
- 7.5 Секции и логические ячейки
- 7.6 Конфигурируемые логические блоки clb и блоки логических массивов lab
- 7.7. Контрольные вопросы
- Лекция 8
- 8.1 Дополнительные встроенные функции
- 8.1.1 Схемы ускоренного переноса
- 8.1.2 Встроенные блоки озу
- 8.1.3 Встроенные умножители, сумматоры и блоки умножения с накоплением
- 8.1.4 Аппаратные и программные встроенные микропроцессорные ядра
- 8.2 Дерево синхронизации и диспетчеры синхронизации
- 8.2.1 Дерево синхронизации
- 8.2.2 Диспетчер синхронизации
- 8.3. Системы с перестраиваемой архитектурой
- 8.4. Программируемый пользователем массив узлов
- 8.4.1. Технология picoArray компании picoChip
- 8.4.2 Технология адаптивных вычислительных машин компании QuickSilver
- 8.5. Контрольные вопросы
- Тема 7. Схемотехника аналоговых узлов Лекция 9. Операционные усилители
- 9.1. Идеальный операционный усилитель
- 9.2. Основные схемы включения операционного усилителя
- 9.2.1. Дифференциальное включение
- 9.2.2. Инвертирующее включение
- 9.2.3 Неинвертирующее включение
- 9.3 Функциональные устройства на операционных усилителях
- 9.3.1 Схема масштабирования
- 9.3.2 Схема суммирования
- 9.3.3 Схема интегрирования
- 9.3.4 Схема дифференцирования
- 9.3.5 Источники напряжения, управляемые током
- 9.3.6 Источники тока, управляемые напряжением
- 9.4 Активные электрические фильтры на оу
- 9.5 Схемы нелинейного преобразования на оу
- 9.6 Генераторы сигналов на оу
- 9.7. Контрольные вопросы
- Лекция 10
- 10.1. Изолирующие усилители
- 10.2. Аналоговые компараторы
- 10.3. Источники опорного напряжения
- 10.4. Аналоговые коммутаторы
- 10.5. Оптореле
- 10.6. Устройства выборки-хранения
- 10.7. Цифроаналоговые преобразователи
- 10.8. Аналого-цифровые преобразователи
- 10.9. Контрольные вопросы
- Тема 8. Схемотехника обслуживающих элементов Лекция 11
- 11.1 Сопряжение цифровых микросхем, изготовленных по разным технологиям, и сопряжение с интерфейсами
- 11.2 Управление входами ттл и кмоп
- 11.3 Дискретное управление нагрузкой от элементов ттл и кмоп
- 11.4 Передача цифровых сигналов на небольшие расстояния
- 11.5 Контрольные вопросы
- Тема 9. Источники питания. Схемотехника комбинаторных узлов Лекция 12
- 12.1. Схемотехника линейных стабилизаторов напряжения
- 12.2 Импульсные стабилизаторы напряжения
- 12.3 Инверторные схемы
- 12.4 Контрольные вопросы
- Тема10. Цифровые компьютеры Лекция 13
- 13.1. Принципы действия цифровых компьютеров
- 13.2. Понятие о системе программного (математического) обеспечения эвм
- 13.3. Большие эвм общего назначения
- 13.3.1. Каналы
- 13.3.2. Интерфейс
- 13.4. Малые эвм
- 13.5. Контрольные вопросы
- Тема 11. Запоминающие устройства Лекция 14
- 14.1 Структура памяти эвм
- 14.2 Способы организации памяти
- 14.2.1 Адресная память
- 14.2.2 Ассоциативная память
- 14.2.3 Стековая память (магазинная)
- 14.3. Структуры адресных зу
- 14.3.1. Зу типа 2d
- 14.3.2. Зу типа 3d
- 14.3.3. Зу типа 2d-m
- 14.4 Постоянные зу (пзу, ппзу)
- 14.5. Флэш-память
- 14.6. Контрольные вопросы
- Тема 12. Процессоры Лекция 15
- 15.1 Операционные устройства (алу)
- 15.2 Управляющие устройства
- 15.2.1. Уу с жёсткой логикой
- 15.2.2 Уу с хранимой в памяти логикой
- 15.2.2.1. Выборка и выполнение мк
- 15.2.2.2. Кодирование мк
- 15.2.2.3. Синхронизация мк
- 15.3. Контрольные вопросы
- Тема 13. Универсальные микропроцессоры Лекция 16. Архитектура процессора кр580вм80
- 16.1. Регистры данных
- 16.2. Арифметико-логическое устройство
- 16.3. Регистр признаков
- 16.4. Блок управления
- 16.5. Буферы
- 16.6. Мп с точки зрения программиста
- 16.7. Форматы данных в кр580вм80
- 16.8. Форматы команд в кр580вм80
- 16.9. Способы адресации
- 16.10. Контрольные вопросы
- Лекция 17. Система команд кр580вм80
- 17.1. Пересылки однобайтовые
- 17.2. Пересылки двухбайтовые
- 17.3. Операции в аккумуляторе
- 17.4. Операции в рон и памяти
- 17.5. Команды управления
- 17.6. Контрольные вопросы
- Тема 14. Структуры микропроцессорных систем Лекция 18. Общие принципы
- 18.1. Системный интерфейс микро-эвм. Цикл шины
- 18.2. Промежуточный интерфейс
- 18.3. Принципы организации ввода/вывода информации в микропроцессорную систему
- 18.4. Контрольные вопросы
- Лекция 19. Принципы организации систем прерывания программ
- 19.1. Характеристики систем прерывания
- 19.2. Возможные структуры систем прерывания
- 19.3. Организация перехода к прерывающей программе
- 19.3.1. Реализация фиксированных приоритетов
- 19.3.2. Реализация программно-управляемых приоритетов
- 19.4. Контрольные вопросы
- Лекция 20. Принципы организации систем прямого доступа в память
- 20.1. Способы организации доступа к системной магистрали
- 20.2. Возможные структуры систем пдп
- 20.3. Организация обмена в режиме пдп
- 20.3.1. Инициализация средств пдп
- 20.3.2. Радиальная структура ( Slave dma)
- 20.3.3. Радиальная структура (Bus master dma)
- 20.3.4. Цепочечная структура ( Bus master dma)
- 20.3.5. Принципы организации арбитража магистрали
- 20.4. Микропроцессорная система на основе мп кр580вм80а
- 20.5. Контрольные вопросы
- Тема 15. Схемы поддержки мп на системных платах Лекция 21
- 21.1. Эволюция шинной архитектуры ibm pc
- 21.1.1. Локальная системная шина
- 21.1.2. Шина расширения
- 21.1.2.1. Шина расширения isa
- 21.1.2.2. Шина расширения mca
- 21.1.2.3. Шина расширения eisa
- 21.1.3. Локальные шины расширения
- 21.1.3.1. Локальная шина vesa (vlb)
- 21.1.3.2. Локальная шина pci
- 21.2. Современные схемы поддержки мп на системных платах
- 21.2.1. Чипсет GeForce 9300/9400 фирмы nvidia
- 21.2.3. Чипсет Intel z68 для платформы Socket 1155
- 21.3. Контрольные вопросы
- Тема 16. Некоторые вопросы развития архитектуры эвм Лекция 22
- 22.1. Теги и дескрипторы. Самоопределяемые данные
- 22.2. Методы оптимизации обмена процессор-память
- 22.2.1. Конвейер команд
- 22.2.2. Расслоение памяти
- 22.2.3. Буферизация памяти
- 22.3. Динамическое распределение памяти. Виртуальная память
- 22.3.1. Виртуальная память
- 22.3.2. Сегментно-страничная организация памяти
- 22.4. Контрольные вопросы
- Лекция 23. Защита памяти
- 23.1. Защита отдельных ячеек памяти
- 23.2. Метод граничных регистров
- 23.3. Метод ключей защиты
- 23.4. Алгоритмы управления многоуровневой памятью
- 23.5. Контрольные вопросы
- Тема 17. Risk – процессоры Лекция 24
- 24.1. Общая характеристика risk - процессоров
- 24.2. Arm архитектура
- 24.2.1. Дополнительные технологии
- 24.2.2. Ядро arm7tdmi
- 24.2.3. Семейство arm10 Tumb
- 24.3. Контрольные вопросы
- Тема 18. Суперкомпьютеры. Параллельные вычислительные системы Лекция 25
- 25.1. Смена приоритетов в области высокопроизводительных вычислений
- 25.2. Сферы применения многоядерных процессоров и многопроцессорных вычислительных систем
- 25.3. Классификация архитектур вычислительных систем по степени параллелизма обработки данных
- 25.4. Архитектуры smp, mpp и numa
- 25.5. Организация когерентности многоуровневой иерархической памяти
- 25.6. Pvp архитектура
- 25.7. Контрольные вопросы
- Лекция 26. Кластерная архитектура
- 26.1. Архитектура связи в кластерных системах
- 26.2. Коммутаторы для многопроцессорных вычислительных систем.
- 26.2.1. Простые коммутаторы
- 26.2.2. Составные коммутаторы
- 26.2.2.1. Коммутатор Клоза
- 26.3. Контрольные вопросы
- Лекция 27. Высокопроизводительные многоядерные процессоры для встраиваемых приложений
- 27.1. Процессоры Tile-64/64Pro компании Tilera
- 27.4. Мультипроцессор Cell
- 27.4.1. Общая структура процессора Cell
- 27.4.2. Структура процессорного элемента Power (ppe)
- 27.4.3. Структура spe — "синергичного" процессорного элемента
- 27.5. Альтернативная технология построения многоядерных систем на кристалле — atac
- 27.5.1. Основные идеи архитектуры atac
- 27.5.2. Ключевые элементы технологии атас
- 27.5.3. Структура межъядерных связей
- 27.5.4. Передача данных и согласование кэш-памяти
- 27.6. Контрольные вопросы
- Список литературы