Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
Обобщенная алгоритмическая схема которой показана на рис. 11.3.5, а.
Будем считать, что передаточная функция W (р), равная произведению передаточных функций объекта и управляющего устройства, известна. Не заданы могут быть лишь некоторые параметры управляющего устройства.
На систему действуют случайные возмущения хп и хв с известными спектральными плотностями и . Задающее воздействие также является случайным сигналом со спектральной плотностью .Пусть все три воздействия — центрированные сигналы. Тогда и сигнал ошибки будет центрированным.
Если указанные внешние воздействия не коррелированы между собой, то сигнал ошибки , возникающий в системе, может рассматриваться как сумма трех независимых составляющих (рис. 11.3.5, б):
(11.3.12)
Составляющая обусловлена неточным воспроизведением задающего воздействия, а составляющие и — неполным подавлением возмущений хп и хв.
Соответственно и дисперсия сигнала ошибки может быть представлена в виде суммы трех дисперсий:
(11.3.13)
Каждая из этих дисперсий может быть вычислена по формуле (11.2.17) независимо друг от друга:
Рис. 11.3.5
(11.3.14)
(11.3.15)
(11.3.16)
Если внешние воздействия коррелированы между собой, то и составляющие (11.3.12) сигнала ошибки будут коррелированы, поэтому полную дисперсию можно вычислить только путем интегрирования общей спектральной плотности , найденной с учетом свойства (11.1.30).
При подстановке в формулы (11.2.28) — (11.2.30) конкретных функций и получаются довольно сложные выражения, интегрирование которых обычными методами затруднительно. Поэтому используют методику для вычисления квадратичных интегральных оценок. В соответствии с этой методикой каждую из трех дисперсий определяют по формуле:
(11.3.17)
где полиномы , и определители и составляются по формулам и
.
В простейших случаях, когда наибольшая степень полинома , формула (11.3.17) будет иметь вид:
(11.3.18)
В полином в виде сомножителя входит характеристическая функция замкнутой системы. Поэтому при приближении системы к границе устойчивости [при ] интеграл (11.3.17) резко возрастает.
Для систем с запаздыванием подынтегральное выражение нельзя привести к виду (11.3.17) и дисперсию можно вычислить только приближенно, заменяя запаздывание дробно-рациональной функцией.
С помощью формул (11.3.13) — (11.3.18) можно получить аналитическое выражение, связывающее полную дисперсию сигнала ошибки с параметрами внешних воздействий и с параметрами системы (например, ):
. (11.3.19)
Минимизируя функцию (11.3.19) по параметрам и можно определить их оптимальные значения.
Покажем, что минимум функции (11.3.19), как правило, существует. Пусть на систему действуют задающее воздействие и помеха хп. Как правило, спектр задающего воздействия находится в области низких частот (рис. 11.3.6, а), а спектр помехи равномерен
Рис 11.3.6 Влияние передаточного коэффициента разомкнутого контура на спектральную плотность сигнала ошибки
Рис. 11.3.7. График зависимости дисперсии сигнала ошибки от передаточного коэффициента разомкнутого контура
в широкой полосе частот (рис. 11.3.6, в). С увеличением передаточного коэффициента k разомкнутого контура а. ч. х. и по каналам и смещаются в область более высоких частот, а резонансный пик становится выше (см. рис. 11.3.6, а, в, пунктирные кривые).
Так как спектральные плотности равны произведениям и на соответствующие а. ч. х. замкнутой системы, то при увеличении k ординаты функции уменьшаются (рис. 11.3.6, б), а ординаты функции увеличиваются (рис. 11.3.6, г). Соответственно меняются и составляющие полной дисперсии: уменьшается при увеличении k, a — увеличивается (рис. 11.3.7). Очевидно, что суммарная дисперсия при некотором значении k = koпm будет иметь минимум.
- Раздел 1. Основные понятия и определения та у 7
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- Раздел 3. Динамические характеристики линейных систем 50
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- Раздел 5. Характеристики замкнутых аср 88
- Раздел 6. Анализ устойчивости линейных систем 106
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Раздел 1. Основные понятия и определения та у
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- Кибернетика
- Основные понятия тау
- Объект автоматического управления
- Примеры объектов и систем управления
- Примеры систем управления
- Функциональные и структурные формы объектов
- Принципы автоматического регулирования (управления)
- Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- 1.2 Классификация аср. Задачи курса тау Классификация аср
- Задачи курса тау
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- 2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- Дифференциальные уравнения
- Составление математической модели
- Линеаризация
- Передаточные функции сау. Преобразования Лапласа
- Примеры моделей звеньев
- Раздел 3. Динамические характеристики линейных систем
- 3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- 3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- Ориентированные графы систем автоматического управления
- Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- Минимально фазовые и неминимально фазовые звенья
- Типовые звенья. Характеристики звеньев
- Раздел 5. Характеристики замкнутых аср
- Замкнутые системы автоматического управления. Виды обратной связи
- Передаточные функции в системах автоматического управления
- Комбинированные аср
- Каскадные аср
- Расчёт настроек регуляторов в каскадных аср
- Последовательность расчёта настроек регуляторов
- Раздел 6. Анализ устойчивости линейных систем
- 6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- Критерии устойчивости
- Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- Алгебраические критерии устойчивости
- Критерий устойчивости Гурвица
- Критерий устойчивости Рауса
- 6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- Критерий устойчивости Михайлова
- Критерий устойчивости Найквиста
- Устойчивость систем с запаздыванием
- Об исследовании точности систем с запаздыванием
- Логарифмический критерий устойчивости
- Логарифмическая форма критерия Найквиста
- Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- Раздел 7. Качество процессов управления
- Методы построения переходных процессов
- Метод Акульшина
- Метод трапеций Солодовникова
- Точность в установившихся режимах
- Введение астатизма
- Метод коэффициентов ошибок
- Раздел 8. Косвенные критерии качества
- 8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- Степень устойчивости
- Степень колебательности
- Частотные критерии качества
- Запас устойчивости
- Оценка быстродействия сар
- Интегральные оценки качества
- Аналитический расчет квадратичных ит-оценок
- Раздел 9. Параметрический синтез типовых регуляторов
- 9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- 9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- 9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- Формульный метод определения настроек регулятора
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- 10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- Характеристика нелинейных систем
- Особенности нелинейных систем
- Типовые нелинейные элементы системы управления
- 10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- Основные понятия
- Фазовые портреты нелинейных систем
- Методы построения фазовых портретов
- Интегрирование уравнений фазовых траекторий
- Метод изоклин
- Метод припасовывания
- Метод сшивания
- Понятие об автоколебаниях
- Методы исследования автоколебаний Критерий Бендиксона
- Метод точечного преобразования y1
- 10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- 10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- Процедура проверки абсолютной устойчивости
- Метод гармонической линеаризации
- Основное уравнение метода гармонического баланса
- Способ Гольдфарба
- Коррекция автоколебаний
- Условия применимости метода гармонического баланса
- Вибрационная линеаризация
- Раздел 11. Системы регулирования при случайных воздействиях
- 11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- Характеристики случайных сигналов
- 11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- Определение оптимальной передаточной функции системы управления
- 11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- Расчет ошибок с сау при случайных воздействиях
- Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- Статистическая оптимизация систем управления
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- Импульсный элемент
- Линейные разностные уравнения
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Решетчатые функции и z-преобразование
- Определение z-преобразования
- Основные свойства z-преобразования
- Цифровые системы управления
- Дискретное преобразование Лапласа и частотные характеристики
- Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- 12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- 12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- 12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- Раздел 13. Анализ устойчивости дискретных систем
- 13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- Алгебраические критерии устойчивости
- Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- Критерий устойчивости Джури
- 13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- Критерий Найквиста
- 13.3 Методы построения переходных процессов. Косвенные критерии качества
- Показатели качества в переходном режиме
- Прямые показатели качества
- Косвенные показатели качества
- Особенности переходного процесса дискретных систем
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- 13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- 14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- Системы экстремального регулирования
- Способ градиента
- 14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- Идентификация и модель для получения оценки
- Модель для получения оценки