Передаточные функции в системах автоматического управления
Передаточной функцией системы (звена) W(s) называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при нулевых начальных условиях.
Требование нулевых начальных условий не вносит принципиальных трудностей. В случае x(0)(k) 0, при переходе к изображениям, переносят члены, соответствующие начальным условиям в правую часть уравнения и считают их возмущающими воздействиями, относительно которых получают передаточные функции.
Рассмотрим некоторую систему автоматического управления. Введем обозначения:
- управляющее (входное) воздействие;
- выходная (регулируемая) величина;
- возмущение;
- рассогласование;
- сравниваемая величина;
- ошибка;
- коэффициент размерности, связывает между собой и .
Если Woc = Koc, то . Для системы регулирования скорости, когда в качестве звена обратной связи используется тахогенератор, . Размерность - размерность времени.
В случае, если Woc =1, то x0 = x. В остальных случаях рассогласование и ошибка (x0 и x) - различные понятия.
В разомкнутой системе (предполагается, что у сумматора обратная связь в системе обрывается) определяют следующие передаточные функции:
Передаточная функция разомкнутой системы
Передаточная функция прямого тракта .
Передаточная функция по возмущению в разомкнутой системе
.
В замкнутой системе определяют следующие передаточные функции:
Передаточная функция замкнутой системы: , (при отрицательной обратной связи).
Передаточная функция замкнутой системы по выходному сигналу:
.
При единичной обратной связи, когда .
где , .
Передаточная функция замкнутой системы по ошибке
.
Передаточная функция замкнутой системы по рассогласованию
.
Передаточная функция по возмущению в замкнутой системе
.
Для регулирования объектами управления, как правило, используют типовые регуляторы, названия которых соответствуют названиям типовых звеньев:
1) П-регулятор, пропорциональный регулятор
Передаточная функция П-регулятора: WП(s) = K1. Принцип действия заключается в том, что регулятор вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка Е, тем больше управляющее воздействие Y).
2) И-регулятор, интегрирующий регулятор
Передаточная функция И-регулятора: WИ(s) = K0 / s. Управляющее воздействие пропорционально интегралу от ошибки.
3) Д-регулятор, дифференцирующий регулятор
Передаточная функция Д-регулятора: WД(s) = K2 * s. Д-регулятор генерирует управляющее воздействие только при изменении регулируемой величины: Y= K2 * dE/dt.
На практике данные простейшие П, И, Д регуляторы комбинируются в регуляторы вида ПИ, ПД, ПИД
(см. рис.5.1.3):
Рисунок 5.1.3 - Виды непрерывных регуляторов
В зависимости от выбранного вида регулятор может иметь пропорциональную характеристику (П), пропорционально-интегральную характеристику (ПИ), пропорционально-дифференциальную характеристику (ПД) или пропорционально-интегральную (изодромную) характеристику с воздействием по производной (ПИД-регулятор).
4) ПИ-регулятор, пропорционально-интегральный регулятор (см. рис.5.1.3.а)
ПИ-регулятор представляет собой сочетание П- и И-регуляторов. Передаточная функция ПИ-регулятора: WПИ(s) = K1 + K0 / s.
5) ПД-регулятор, пропорционально-дифференциальный регулятор (см. рис.5.1.3.б)
ПД-регулятор представляет собой сочетание П- и Д-регуляторов. Передаточная функция ПД-регулятора: WПД(s) = K1 + K2 s.
6) ПИД-регулятор, пропорционально-интегрально-дифференциальный регулятор (см. рис.5.1.4.в)
ПИД-регулятор представляет собой сочетание П-, И- и Д-регуляторов. Передаточная функция ПИД-регулятора: WПИД(s) = K1 + K0 / s + K2 s.
Наиболее часто используется ПИД-регулятор, поскольку он сочетает в себе достоинства всех трех типовых регуляторов.
П-регулятор, реакция на единичное ступенчатое воздействие
Параметрами П-регулятора являются коэффициент усиления Кр и рабочая точка Y0.
Рабочая точка Y0 определяется как значение выходного сигнала, при котором рассогласование регулируемой величины равно нулю. При влиянии возмущающих воздействий возникает, в зависимости от Y0, отклонение регулирования.
Рисунок 5.1.5 - П-регулятор. Реакция на единичное ступенчатое воздействие
ПИ-регулятор, реакция на единичное ступенчатое воздействие
В отличие от П-регулятора у ПИ-регулятора, благодаря интегральной составляющей, исключается отклонение регулирования.
Параметром интегральной составляющей является время интегрирования Tи.
Рисунок 5.1.6 - ПИ-регулятор. Реакция на единичное ступенчатое воздействие
ПД-регулятор, реакция на единичное ступенчатое воздействие.
У ПД-регуляторов пропорциональная составляющая накладывается на затухающую дифференциальную составляющую.
Д-составляющая определяется через усиление упреждения Vд и время дифференцирования Tд.
Рисунок 5.1.7 - ПД-регулятор. Реакция на единичное ступенчатое воздействие
ПИД-регулятор, реакция на единичное ступенчатое воздействие
Благодаря дополнительному подключению Д-составляющей ПИД-регулятор достигает улучшения динамического качества регулирования.
Рисунок 5.1.8 - ПИД-регулятор. Реакция на единичное ступенчатое воздействие
- Раздел 1. Основные понятия и определения та у 7
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- Раздел 3. Динамические характеристики линейных систем 50
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- Раздел 5. Характеристики замкнутых аср 88
- Раздел 6. Анализ устойчивости линейных систем 106
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Раздел 1. Основные понятия и определения та у
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- Кибернетика
- Основные понятия тау
- Объект автоматического управления
- Примеры объектов и систем управления
- Примеры систем управления
- Функциональные и структурные формы объектов
- Принципы автоматического регулирования (управления)
- Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- 1.2 Классификация аср. Задачи курса тау Классификация аср
- Задачи курса тау
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- 2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- Дифференциальные уравнения
- Составление математической модели
- Линеаризация
- Передаточные функции сау. Преобразования Лапласа
- Примеры моделей звеньев
- Раздел 3. Динамические характеристики линейных систем
- 3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- 3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- Ориентированные графы систем автоматического управления
- Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- Минимально фазовые и неминимально фазовые звенья
- Типовые звенья. Характеристики звеньев
- Раздел 5. Характеристики замкнутых аср
- Замкнутые системы автоматического управления. Виды обратной связи
- Передаточные функции в системах автоматического управления
- Комбинированные аср
- Каскадные аср
- Расчёт настроек регуляторов в каскадных аср
- Последовательность расчёта настроек регуляторов
- Раздел 6. Анализ устойчивости линейных систем
- 6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- Критерии устойчивости
- Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- Алгебраические критерии устойчивости
- Критерий устойчивости Гурвица
- Критерий устойчивости Рауса
- 6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- Критерий устойчивости Михайлова
- Критерий устойчивости Найквиста
- Устойчивость систем с запаздыванием
- Об исследовании точности систем с запаздыванием
- Логарифмический критерий устойчивости
- Логарифмическая форма критерия Найквиста
- Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- Раздел 7. Качество процессов управления
- Методы построения переходных процессов
- Метод Акульшина
- Метод трапеций Солодовникова
- Точность в установившихся режимах
- Введение астатизма
- Метод коэффициентов ошибок
- Раздел 8. Косвенные критерии качества
- 8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- Степень устойчивости
- Степень колебательности
- Частотные критерии качества
- Запас устойчивости
- Оценка быстродействия сар
- Интегральные оценки качества
- Аналитический расчет квадратичных ит-оценок
- Раздел 9. Параметрический синтез типовых регуляторов
- 9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- 9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- 9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- Формульный метод определения настроек регулятора
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- 10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- Характеристика нелинейных систем
- Особенности нелинейных систем
- Типовые нелинейные элементы системы управления
- 10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- Основные понятия
- Фазовые портреты нелинейных систем
- Методы построения фазовых портретов
- Интегрирование уравнений фазовых траекторий
- Метод изоклин
- Метод припасовывания
- Метод сшивания
- Понятие об автоколебаниях
- Методы исследования автоколебаний Критерий Бендиксона
- Метод точечного преобразования y1
- 10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- 10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- Процедура проверки абсолютной устойчивости
- Метод гармонической линеаризации
- Основное уравнение метода гармонического баланса
- Способ Гольдфарба
- Коррекция автоколебаний
- Условия применимости метода гармонического баланса
- Вибрационная линеаризация
- Раздел 11. Системы регулирования при случайных воздействиях
- 11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- Характеристики случайных сигналов
- 11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- Определение оптимальной передаточной функции системы управления
- 11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- Расчет ошибок с сау при случайных воздействиях
- Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- Статистическая оптимизация систем управления
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- Импульсный элемент
- Линейные разностные уравнения
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Решетчатые функции и z-преобразование
- Определение z-преобразования
- Основные свойства z-преобразования
- Цифровые системы управления
- Дискретное преобразование Лапласа и частотные характеристики
- Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- 12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- 12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- 12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- Раздел 13. Анализ устойчивости дискретных систем
- 13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- Алгебраические критерии устойчивости
- Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- Критерий устойчивости Джури
- 13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- Критерий Найквиста
- 13.3 Методы построения переходных процессов. Косвенные критерии качества
- Показатели качества в переходном режиме
- Прямые показатели качества
- Косвенные показатели качества
- Особенности переходного процесса дискретных систем
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- 13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- 14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- Системы экстремального регулирования
- Способ градиента
- 14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- Идентификация и модель для получения оценки
- Модель для получения оценки