Метод точечного преобразования y1
Этот метод используется для качественного исследования хода фазовых траекторий, выявления автоколебаний в системе и изучения их устойчивости. Суть метода заключается в следующем. Рассмотрим на фазовой плоскости отдельную фазовую траекторию и какую-либо полупрямую, например Oy1 (рис. 10.2.17).
В некоторый момент времени фазовая траектория пересечет положительную полуось в точке M1 с координатой y11. При дальнейшем движении фазовая траектория вновь пересечет положительную полуось, но уже в точке M2 с координатой y21
Рисунок 10.2.17 - Отдельная фазовая траектория
Через каждую точку полуоси Oy1 проходит лишь одна фазовая траектория, поэтому обходу изображающей точки вокруг начала координат соответствует переход произвольной точки полупрямой Oy1(точки M1) в другую точку этой же полупрямой (точку M2). Иначе говоря, обходу фазовой траектории вокруг начала координат соответствует точечное преобразование полупрямой Oy1 в саму себя. Очевидно, что положение точки M2 зависит от M1 , т.е.
y21= f(y11) (10.2.1)
где через y11 и y21 обозначены абсциссы точек M1 и M2
Функция y21= f(y11) называется функцией последования.
В некоторых случаях эту функцию (10.2.1) удается получить аналитически из исходного дифференциального уравнения системы.
Если при любом y11 получается, что y21 < y11, то в системе будет затухающий процесс, т.е. фазовая траектория - спираль, навивающаяся на начало координат; если y21 > y11, то процесс в системе будет расходящимся.
При y21 =y11 на фазовой траектории будет предельный цикл, который соответствует колебательному режиму в системе. Представим функцию последования f(y11) графически (рис. 10.2.18).
Рисунок 10.2.18 - Функция последования
На этот график наносится прямая y21 =y11 .Анализируя взаиморасположение кривой f(y11) и прямой y21 =y11, легко видеть, что если при некотором y*1 выполняется равенство y21 =y11 = y*1, т.е. f(y11) пересекает прямую y21 =y11 , то через точку y*1 проходит замкнутая фазовая траектория.
Рассматривая взаиморасположение кривой f(y11) и прямой y21 =y11 можно также ответить на вопрос, будут ли устойчивы периодические колебания, соответствующие этой замкнутой траектории.
Пусть в начальный момент времени изображающая точка находится в точке M на некоторой фазовой траектории. При движении по этой траектории переходим к точке с абсциссой y21.
Далее y21 преобразуется в y31, y31- в y41 и т.д. (рис. 10.2.18).
Для других начальных условий: абсцисса точки , также строится "лестница" движения от этой точки (рис. 10.2.18), таким образом получают, что изображающая точка с обеих сторон от "неподвижной" точки y1* приближается к ней. Следовательно, в данном случае на фазовой плоскости будет устойчивый предельный цикл, соответствующий устойчивым автоколебаниям в системе. Величина определяет амплитуду автоколебаний.
Различные случаи точечного преобразования и соответствующие им фазовые портреты представлены на рис. 10.2.19. На рис. 10.2.19, а представлена функция последования для системы, имеющей два предельных цикла, из которых один устойчив, а другой неустойчив. Функция последования для системы с полуустойчивым предельным циклом изображена на рис. 10.2.19 б.
Рис. 10.2.19 - Варианты точечного преобразования:
а - наличие устойчивого и неустойчивого предельных циклов; б- наличие полуустойчивого предельного цикла
- Раздел 1. Основные понятия и определения та у 7
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- Раздел 3. Динамические характеристики линейных систем 50
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- Раздел 5. Характеристики замкнутых аср 88
- Раздел 6. Анализ устойчивости линейных систем 106
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Раздел 1. Основные понятия и определения та у
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- Кибернетика
- Основные понятия тау
- Объект автоматического управления
- Примеры объектов и систем управления
- Примеры систем управления
- Функциональные и структурные формы объектов
- Принципы автоматического регулирования (управления)
- Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- 1.2 Классификация аср. Задачи курса тау Классификация аср
- Задачи курса тау
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- 2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- Дифференциальные уравнения
- Составление математической модели
- Линеаризация
- Передаточные функции сау. Преобразования Лапласа
- Примеры моделей звеньев
- Раздел 3. Динамические характеристики линейных систем
- 3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- 3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- Ориентированные графы систем автоматического управления
- Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- Минимально фазовые и неминимально фазовые звенья
- Типовые звенья. Характеристики звеньев
- Раздел 5. Характеристики замкнутых аср
- Замкнутые системы автоматического управления. Виды обратной связи
- Передаточные функции в системах автоматического управления
- Комбинированные аср
- Каскадные аср
- Расчёт настроек регуляторов в каскадных аср
- Последовательность расчёта настроек регуляторов
- Раздел 6. Анализ устойчивости линейных систем
- 6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- Критерии устойчивости
- Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- Алгебраические критерии устойчивости
- Критерий устойчивости Гурвица
- Критерий устойчивости Рауса
- 6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- Критерий устойчивости Михайлова
- Критерий устойчивости Найквиста
- Устойчивость систем с запаздыванием
- Об исследовании точности систем с запаздыванием
- Логарифмический критерий устойчивости
- Логарифмическая форма критерия Найквиста
- Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- Раздел 7. Качество процессов управления
- Методы построения переходных процессов
- Метод Акульшина
- Метод трапеций Солодовникова
- Точность в установившихся режимах
- Введение астатизма
- Метод коэффициентов ошибок
- Раздел 8. Косвенные критерии качества
- 8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- Степень устойчивости
- Степень колебательности
- Частотные критерии качества
- Запас устойчивости
- Оценка быстродействия сар
- Интегральные оценки качества
- Аналитический расчет квадратичных ит-оценок
- Раздел 9. Параметрический синтез типовых регуляторов
- 9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- 9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- 9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- Формульный метод определения настроек регулятора
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- 10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- Характеристика нелинейных систем
- Особенности нелинейных систем
- Типовые нелинейные элементы системы управления
- 10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- Основные понятия
- Фазовые портреты нелинейных систем
- Методы построения фазовых портретов
- Интегрирование уравнений фазовых траекторий
- Метод изоклин
- Метод припасовывания
- Метод сшивания
- Понятие об автоколебаниях
- Методы исследования автоколебаний Критерий Бендиксона
- Метод точечного преобразования y1
- 10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- 10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- Процедура проверки абсолютной устойчивости
- Метод гармонической линеаризации
- Основное уравнение метода гармонического баланса
- Способ Гольдфарба
- Коррекция автоколебаний
- Условия применимости метода гармонического баланса
- Вибрационная линеаризация
- Раздел 11. Системы регулирования при случайных воздействиях
- 11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- Характеристики случайных сигналов
- 11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- Определение оптимальной передаточной функции системы управления
- 11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- Расчет ошибок с сау при случайных воздействиях
- Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- Статистическая оптимизация систем управления
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- Импульсный элемент
- Линейные разностные уравнения
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Решетчатые функции и z-преобразование
- Определение z-преобразования
- Основные свойства z-преобразования
- Цифровые системы управления
- Дискретное преобразование Лапласа и частотные характеристики
- Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- 12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- 12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- 12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- Раздел 13. Анализ устойчивости дискретных систем
- 13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- Алгебраические критерии устойчивости
- Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- Критерий устойчивости Джури
- 13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- Критерий Найквиста
- 13.3 Методы построения переходных процессов. Косвенные критерии качества
- Показатели качества в переходном режиме
- Прямые показатели качества
- Косвенные показатели качества
- Особенности переходного процесса дискретных систем
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- 13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- 14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- Системы экстремального регулирования
- Способ градиента
- 14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- Идентификация и модель для получения оценки
- Модель для получения оценки