11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
Так как устойчивость линейных систем является свойством системы и не зависит от характера воздействия, то устойчивость при случайных воздействиях определяется также, как и для детерминированных.
Качество систем при детерминированных воздействиях оценивается с помощью показателей качества, таких как tp, , T и т.д. При случайных воздействиях они теряют смысл, так как входные и выходные величины являются случайными функциями времени и при исследовании рассматривают не сами процессы, а их статистические свойства, т.е. определяют не мгновенные значения процессов, а их средние значения.
При случайных воздействиях ошибка системы (t) = x(t)-y(t) также является случайной величиной, при этом используют ее усредненное значение – среднюю квадратичную ошибку
(11.3.1)
Эта ошибка используется для оценки точности или качества систем при случайных воздействиях.
Недостатки средней квадратичной ошибки:
1.Она обеспечивает минимум не мгновенного, а среднего значения, при этом мгновенное значение может быть недопустимо большим.
2. Она недооценивает малые ошибки и придает чрезмерное значение большим ошибкам, так как ее значение возводится в квадрат.
Синтез оптимальных передаточных функций САУ при случайных воздействиях
Если на входе системы помимо управляющего есть и возмущающее воздействие (помеха), то ошибка такой системы состоит из двух составляющих. Часто оказывается, что стремление уменьшить одну составляющую приводит к увеличению второй и наоборот. Задача синтеза и состоит в том, чтобы обеспечить минимально возможную сумму обеих составляющих.
Возможны несколько способов решения задачи синтеза. Первый и наиболее простой применим, если уже известна структура системы. В этом случае необходимо, используя выше приведенные выражения определить СКО как функцию варьируемых параметров системы и обычным методом определить их значения, дающие минимум ошибки. Еще один способ применим когда полезный сигнал имеет более низкочастотный спектр, чем помеха (рис.11.3.1).
Рис.11.3.1. АЧХ системы спектральные плотности полезного сигнала и помехи
В этом случае полоса пропускания системы должна быть выбрана достаточно широкой для обеспечения необходимой точности воспроизведения полезного сигнала, но такой ширины, чтобы полностью отфильтровать помехи.
В наиболее общем случае, когда спектры полезного сигнала и помехи накладываются друг на друга систему строят так, чтобы ее частотная характеристика максимально приближалась к спектральной характеристике полезного сигнала.
Рассмотрим методику определения оптимальной передаточной функции по критерию минимума СКО, когда структура системы неизвестна, а известна только передаточная функция неизменяемой части.
При определении оптимальной частотной характеристики замкнутой САУ по критерию минимума СКО между идеальным сигналом и оптимальным сигналом , предположим, что:
1) идеальная частотная характеристика или идеальная функция веса известны;
2) полезный сигнал и помеха являются стационарными эргодическими случайными процессами с нулевым математическим ожиданием и их корреляционные функции и спектральные плотности известны;
3) на время переходного процесса ограничения не накладываются, т.е. решение ищется в классе систем с “ бесконечной памятью”.
Схема постановки задачи приведена на рисунке 11.3.2.
Рис.11.3.2. Cхема синтеза оптимальной САУ
Необходимое условие, которому должна удовлетворять оптимальная импульсная переходная функция получена Н.Винером в виде интегрального уравнения
(11.3.2)
при
Корреляционная функция суммарного сигнала на входе определяется выражением
Условие отражает принцип физической осуществимости системы. Если полезный сигнал и помеха некоррелированы, то
Уравнение (11.3.2) можно преобразовать к виду
, (11.3.3)
где некоторая функция, равная нулю при Это условие приводит к тому, что функция связанная с преобразованием Фурье, не будет содержать полюсов в верхней полуплоскости плоскости Преобразование Фурье дает возможность перейти к спектральным плотностям.
(11.3.4)
Предположим, что спектральная плотность входного сигнала имеет дробно-рациональный вид и может быть представлена в виде
(11.3.5)
Здесь имеет все нули и полюсы в верхней полуплоскости, а -в нижней полуплоскости плоскости Разделим (11.3.4) на и получим
(11.3.6)
Дробь в левой части выражения (11.3.6) можно преобразовать к виду суммы
причем имеет все нули и полюсы только в верхней полуплоскости, а -только в нижней полуплоскости плоскости . С учетом этого выражение (11.3.6) преобразуем к виду
Последнее выражение справедливо для всей плоскости . Однако, поскольку необходимо выполнение условия физической реализуемости то решение ищется только в верхней полуплоскости и указанное выражение принимает вид
Отсюда для амплитудно-фазовой характеристики замкнутой САУ получим
(11.3.7)
Передаточная функция замкнутой САУ По этой передаточной функции определяется передаточная функция разомкнутой системы, а затем, с учетом известной передаточной функции неизменяемой части, находится передаточная функция корректирующего устройства.
Пример 11.3.1
Полезный сигнал и помеха заданы своими корреляционными функциями:
;
Полезный сигнал и помеха не коррелированы. Идеальная передаточная функция ,т.е. должна быть решена задача оптимальной фильтрации.
Прежде всего определим спектральные плотности.
Аналогично получим
Далее процесс решения задачи Винера состоит из следующих операций:
1.Вычислим
Здесь
Разложим эту функцию на комплексно-сопряженные множители
Отсюда
2. Вычислим взаимную спектральную плотность
Ф
3. Определим функцию
Приведя к общему знаменателю и приравнивая числители этого и предыдущего выражений, получим систему уравнений, из решения которой будем иметь
4. Вычислим частотную характеристику оптимальной системы
- Раздел 1. Основные понятия и определения та у 7
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- Раздел 3. Динамические характеристики линейных систем 50
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- Раздел 5. Характеристики замкнутых аср 88
- Раздел 6. Анализ устойчивости линейных систем 106
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Раздел 1. Основные понятия и определения та у
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- Кибернетика
- Основные понятия тау
- Объект автоматического управления
- Примеры объектов и систем управления
- Примеры систем управления
- Функциональные и структурные формы объектов
- Принципы автоматического регулирования (управления)
- Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- 1.2 Классификация аср. Задачи курса тау Классификация аср
- Задачи курса тау
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- 2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- Дифференциальные уравнения
- Составление математической модели
- Линеаризация
- Передаточные функции сау. Преобразования Лапласа
- Примеры моделей звеньев
- Раздел 3. Динамические характеристики линейных систем
- 3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- 3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- Ориентированные графы систем автоматического управления
- Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- Минимально фазовые и неминимально фазовые звенья
- Типовые звенья. Характеристики звеньев
- Раздел 5. Характеристики замкнутых аср
- Замкнутые системы автоматического управления. Виды обратной связи
- Передаточные функции в системах автоматического управления
- Комбинированные аср
- Каскадные аср
- Расчёт настроек регуляторов в каскадных аср
- Последовательность расчёта настроек регуляторов
- Раздел 6. Анализ устойчивости линейных систем
- 6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- Критерии устойчивости
- Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- Алгебраические критерии устойчивости
- Критерий устойчивости Гурвица
- Критерий устойчивости Рауса
- 6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- Критерий устойчивости Михайлова
- Критерий устойчивости Найквиста
- Устойчивость систем с запаздыванием
- Об исследовании точности систем с запаздыванием
- Логарифмический критерий устойчивости
- Логарифмическая форма критерия Найквиста
- Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- Раздел 7. Качество процессов управления
- Методы построения переходных процессов
- Метод Акульшина
- Метод трапеций Солодовникова
- Точность в установившихся режимах
- Введение астатизма
- Метод коэффициентов ошибок
- Раздел 8. Косвенные критерии качества
- 8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- Степень устойчивости
- Степень колебательности
- Частотные критерии качества
- Запас устойчивости
- Оценка быстродействия сар
- Интегральные оценки качества
- Аналитический расчет квадратичных ит-оценок
- Раздел 9. Параметрический синтез типовых регуляторов
- 9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- 9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- 9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- Формульный метод определения настроек регулятора
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- 10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- Характеристика нелинейных систем
- Особенности нелинейных систем
- Типовые нелинейные элементы системы управления
- 10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- Основные понятия
- Фазовые портреты нелинейных систем
- Методы построения фазовых портретов
- Интегрирование уравнений фазовых траекторий
- Метод изоклин
- Метод припасовывания
- Метод сшивания
- Понятие об автоколебаниях
- Методы исследования автоколебаний Критерий Бендиксона
- Метод точечного преобразования y1
- 10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- 10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- Процедура проверки абсолютной устойчивости
- Метод гармонической линеаризации
- Основное уравнение метода гармонического баланса
- Способ Гольдфарба
- Коррекция автоколебаний
- Условия применимости метода гармонического баланса
- Вибрационная линеаризация
- Раздел 11. Системы регулирования при случайных воздействиях
- 11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- Характеристики случайных сигналов
- 11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- Определение оптимальной передаточной функции системы управления
- 11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- Расчет ошибок с сау при случайных воздействиях
- Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- Статистическая оптимизация систем управления
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- Импульсный элемент
- Линейные разностные уравнения
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Решетчатые функции и z-преобразование
- Определение z-преобразования
- Основные свойства z-преобразования
- Цифровые системы управления
- Дискретное преобразование Лапласа и частотные характеристики
- Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- 12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- 12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- 12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- Раздел 13. Анализ устойчивости дискретных систем
- 13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- Алгебраические критерии устойчивости
- Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- Критерий устойчивости Джури
- 13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- Критерий Найквиста
- 13.3 Методы построения переходных процессов. Косвенные критерии качества
- Показатели качества в переходном режиме
- Прямые показатели качества
- Косвенные показатели качества
- Особенности переходного процесса дискретных систем
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- 13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- 14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- Системы экстремального регулирования
- Способ градиента
- 14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- Идентификация и модель для получения оценки
- Модель для получения оценки