12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
К динамическим характеристикам дискретных систем, как и в теории непрерывных систем, относят передаточные функции, временные (импульсные, переходные) и частотные характеристики. В литературе принято называть эти характеристики, добавляя слово "дискретная" (например, "дискретная передаточная функция" - ДПФ, "дискретная переходная характеристика" - ДПХ и т. д.). Здесь мы ограничимся написанием символа * и аргумента iTn, подчеркивающих принадлежность характеристик дискретным системам. Перейдем к их рассмотрению, для чего запишем конечно-разностное уравнение системы
Возьмем z-преобразование от обеих его частей с учетом правила нахождения изображения конечной разности. В итоге получим операторное уравнение^
из которого находим передаточную функцию дискретной системы в виде отношения изображений
(12.4.1)
По своей структуре эта функция совпадает с передаточной функцией непрерывной системы, если вместо оператора р подставить оператор (1-z-1). Когда разностное уравнение задано в рекуррентной форме
ему будет соответствовать операторное уравнение
После преобразований получим вторую форму записи передаточной функции
(12.4.2)
Формулы (12.4.1) и (12.4.2) эквивалентны и могут быть получены друг из друга. С их помощью изображение выходного процесса по изображению входного процесса находится как произведение
(12.4.3)
Рис. 12.4.1. Соединение дискретных звеньев
Благодаря одинаковой структуре передаточной функции дискретной системы и передаточной функции непрерывной системы остаются справедливыми все правила структурных преобразований, применяемые для непрерывных систем. Так, для последовательного соединения дискретных звеньев (рис. 12.4.1,а)
Для параллельного соединения (рис. 12.4.1,б)
Для соединения с обратной связью (рис. 12.4.1, в)K*yx(z) = K*1(z)
Рис. 12.4.2. Импульсная характеристика дискретной системы
При нахождении временных характеристик в качестве типовых воздействий используются единичный дискретный импульс и единичная дискретная функция. Импульсной характеристикой линейной дискретной системы Kyx(iTn) (рис. 12.4.2, а) называется реакция на единичный дискретный импульс δ(iTn) при нулевых начальных условиях. С ее помощью можно определить реакцию системы на произвольное воздействие х(iTn). Рассматривая рис. 12.4.2,б, нетрудно понять, что значение выходного процесса y(iTn) можно подсчитать по формуле
Если учесть условие физической реализуемости импульсной характеристики
при i < k, то эту формулу можно переписать, заменив верхний предел суммы бесконечностью, то есть
(12.4.4)
Это соотношение называется формулой свертки, оно аналогично интегралу свертки в теории непрерывных систем. Возьмем z - преобразование от формулы свертки и найдем изображение выходного процесса через импульсную характеристику
Мы искусственно домножили слагаемые на единичный множитель в форме
Поменяем местами порядок суммирования, произведем перегруппировку сомножителей и заменим переменную i-k = r, i = k+r, после чего будем иметь
По условию физической реализуемости kyx(rTn) = 0 при r < 0, поэтому нижний предел у внутренней суммы можно заменить нулем и она не будет зависеть от переменной k, в результате чего суммы станут независимыми и их можно поменять местами. Заметим, что первая сумма
поэтому изображение выходной переменной станет равным
Сравнивая это равенство с формулой (12.4.3), получаем выражение для передаточной функции через импульсную характеристику в виде
(12.4.5)
Таким образом, передаточная функция дискретной системы является z-преобразованием от импульсной характеристики.
Рис. 12.4.3. Переходная характеристика дискретной системы
Переходной характеристикой линейной дискретной системы hyx(iTn) называется реакция на единичную дискретную функцию 1(iTn) при нулевых начальных условиях (рис. 12.4.3). Подставляя в формулу свертки (12.4.4) функцию
x(iTn) = 1(iTn),
найдем связь между переходной и импульсной характеристиками в виде
(12.4.6)
Переходная характеристика находится в виде суммы значений импульсной характеристики. Так как изображение единичного воздействия равно
то изображение переходной характеристики
Перейдем к рассмотрению частотных характеристик, для чего в передаточной функции K*yx(z) заменим переменную
и обозначим полученную функцию через K*yx(z). Форму частотной характеристики дискретной системы удобнее всего получить, если вначале рассмотреть непрерывную огибающую kyx(t) импульсной характеристики kyx(iTn). На рисунке 12.4.2, а эта огибающая показана пунктиром. Возьмем преобразование Лапласа от этой непрерывной функции и назовем ее передаточной функцией системы по огибающей
.
Тогда в соответствии с формулой связи между изображениями дискретной и непрерывной функций можно записать, что
Заменяя в этом равенстве p на jω, получаем формулу связи между частотными характеристиками дискретной системы и частотной характеристикой по огибающей
(12.4.7)
По своему содержанию это выражение аналогично спектру дискретного процесса . Рассмотрим амплитудно-частотную характеристику дискретной системы |K*yx(jω)| в соответствии с амплитудно-частотной характеристикой по огибающей |K*yx(jω)|. Пусть форма |Kyx(jω)| имеет вид, показанный на рис. 12.4.4, а, где ω0 - полоса пропускания такая, что при ω > ω0 |Kyx(jω)| → 0. Частотная характеристика дискретной системы при ω0 < показана на рис. 12.4.4, а, а при ω0 > - на рис. 12.4.4, б.
Рис. 12.4.4. Амплитудно-частотные характеристики инерционных дискретных звеньев
Дискретные системы, у которых ω0 < , обладают свойством гребенчатых фильтров. Как будет показано ниже, эти свойства оказываются необходимыми для качественной работы дискретных следящих систем.
- Раздел 1. Основные понятия и определения та у 7
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- Раздел 3. Динамические характеристики линейных систем 50
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- Раздел 5. Характеристики замкнутых аср 88
- Раздел 6. Анализ устойчивости линейных систем 106
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Раздел 1. Основные понятия и определения та у
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- Кибернетика
- Основные понятия тау
- Объект автоматического управления
- Примеры объектов и систем управления
- Примеры систем управления
- Функциональные и структурные формы объектов
- Принципы автоматического регулирования (управления)
- Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- 1.2 Классификация аср. Задачи курса тау Классификация аср
- Задачи курса тау
- Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- 2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- Дифференциальные уравнения
- Составление математической модели
- Линеаризация
- Передаточные функции сау. Преобразования Лапласа
- Примеры моделей звеньев
- Раздел 3. Динамические характеристики линейных систем
- 3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- 3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- Ориентированные графы систем автоматического управления
- Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- Минимально фазовые и неминимально фазовые звенья
- Типовые звенья. Характеристики звеньев
- Раздел 5. Характеристики замкнутых аср
- Замкнутые системы автоматического управления. Виды обратной связи
- Передаточные функции в системах автоматического управления
- Комбинированные аср
- Каскадные аср
- Расчёт настроек регуляторов в каскадных аср
- Последовательность расчёта настроек регуляторов
- Раздел 6. Анализ устойчивости линейных систем
- 6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- Критерии устойчивости
- Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- Алгебраические критерии устойчивости
- Критерий устойчивости Гурвица
- Критерий устойчивости Рауса
- 6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- Критерий устойчивости Михайлова
- Критерий устойчивости Найквиста
- Устойчивость систем с запаздыванием
- Об исследовании точности систем с запаздыванием
- Логарифмический критерий устойчивости
- Логарифмическая форма критерия Найквиста
- Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- Раздел 7. Качество процессов управления
- Методы построения переходных процессов
- Метод Акульшина
- Метод трапеций Солодовникова
- Точность в установившихся режимах
- Введение астатизма
- Метод коэффициентов ошибок
- Раздел 8. Косвенные критерии качества
- 8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- Степень устойчивости
- Степень колебательности
- Частотные критерии качества
- Запас устойчивости
- Оценка быстродействия сар
- Интегральные оценки качества
- Аналитический расчет квадратичных ит-оценок
- Раздел 9. Параметрический синтез типовых регуляторов
- 9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- 9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- 9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- Формульный метод определения настроек регулятора
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- 10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- Характеристика нелинейных систем
- Особенности нелинейных систем
- Типовые нелинейные элементы системы управления
- 10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- Основные понятия
- Фазовые портреты нелинейных систем
- Методы построения фазовых портретов
- Интегрирование уравнений фазовых траекторий
- Метод изоклин
- Метод припасовывания
- Метод сшивания
- Понятие об автоколебаниях
- Методы исследования автоколебаний Критерий Бендиксона
- Метод точечного преобразования y1
- 10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- 10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- Процедура проверки абсолютной устойчивости
- Метод гармонической линеаризации
- Основное уравнение метода гармонического баланса
- Способ Гольдфарба
- Коррекция автоколебаний
- Условия применимости метода гармонического баланса
- Вибрационная линеаризация
- Раздел 11. Системы регулирования при случайных воздействиях
- 11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- Характеристики случайных сигналов
- 11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- Определение оптимальной передаточной функции системы управления
- 11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- Расчет ошибок с сау при случайных воздействиях
- Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- Статистическая оптимизация систем управления
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- Импульсный элемент
- Линейные разностные уравнения
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- Решетчатые функции и z-преобразование
- Определение z-преобразования
- Основные свойства z-преобразования
- Цифровые системы управления
- Дискретное преобразование Лапласа и частотные характеристики
- Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- 12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- 12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- 12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- Раздел 13. Анализ устойчивости дискретных систем
- 13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- Алгебраические критерии устойчивости
- Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- Критерий устойчивости Джури
- 13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- Критерий Найквиста
- 13.3 Методы построения переходных процессов. Косвенные критерии качества
- Показатели качества в переходном режиме
- Прямые показатели качества
- Косвенные показатели качества
- Особенности переходного процесса дискретных систем
- Раздел 1. Основные понятия и определения та у 7
- 1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- Раздел 7. Качество процессов управления 140
- Раздел 8. Косвенные критерии качества 154
- Раздел 9. Параметрический синтез типовых регуляторов 169
- Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- Раздел 11. Системы регулирования при случайных воздействиях 214
- Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- Раздел 13. Анализ устойчивости дискретных систем 274
- Раздел 14. Адаптивные системы 293
- 13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- 14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- Системы экстремального регулирования
- Способ градиента
- 14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- Идентификация и модель для получения оценки
- Модель для получения оценки