logo
учебное пособие(готовое)

Логарифмический критерий устойчивости

АФЧХ разомкнутой системы подразделяются на два типа:

АФЧХ первого рода, все точки, пересечения которых с вещественной осью расположены справа от критической точки (кривая 1, рис. 6.2.13);

АФЧХ второго рода, точки, пересечения которых с вещественной осью расположены как справа, так и слева от критической точки (кривая 2, рис. 6.2.13).

Рисунок 6.2.13 - Типы АФЧХ

В системах первого рода увеличение коэффициента усиления ведет к сдвигу ветви кривой влево и приближению ее к критической точке. Запасы устойчивости при этом уменьшаются и при k=kкр система попадает на границу устойчивости. Уменьшение коэффициента усиления стабилизирует систему. В системах 2-го рода переход системы на границу устойчивости может происходить как при увеличении коэффициента усиления, так и при его уменьшении. Из критерия Найквиста следует, что замкнутая система, имеющая в разомкнутом состоянии АФЧХ 1-го рода устойчива, если всем точкам АФЧХ, вплоть до точки пересечения ее с окружностью единичного радиуса (=с) , соответствуют значения фазы (), большие, чем -, т.е. должно выполняться неравенство с<. Этому определению легко дать интерпретацию на языке ЛЧХ.

Рис. 6.2.14. ЛЧХ системы 1-го рода

Для того чтобы система, устойчивая в разомкнутом состоянии и имеющая АФЧХ первого рода, была устойчивой и в замкнутом состоянии, необходимо и достаточно, чтобы при всех частотах, при которых ЛАХ положительна, значения фазовой характеристики были больше, чем -, т.е. с<.

По ЛЧХ легко определяются и запасы устойчивости, причем запас устойчивости по усилению в логарифмическом масштабе должен удовлетворять условию Н>6дб, что соответствует значениям h>2.

Для того, чтобы САУ неустойчивая в разомкнутом состоянии и имеющая АФЧХ 2-го рода, была устойчивой в замкнутом состоянии, необходимо и достаточно, чтобы разность между числом положительных и отрицательных переходов фазовой характеристикой через линию - была равна р/2, где р- число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости, при всех частотах когда L()>0.

Рис. 6.2.15 - ЛЧХ системы 2-го рода

Необходимо подчеркнуть, что показанные способы оценки устойчивости по ЛЧХ и определения запасов устойчивости справедливы при таком расположении оси ординат относительно фазовой характеристики, когда с началом координат совмещена точка ()=-1800.

По ЛЧХ можно определить и критический коэффициент усиления. Для этого необходимо сместить ЛАХ вдоль линий сопряжения параллельно самой себе так, чтобы выполнить условие с = и вычислить коэффициент усиления для вновь полученной ЛАХ.

Определение критического коэффициента усиления для статической и астатической систем иллюстрируется рис. 6.2.16 а и 6.2.16б.

Рисунок 6.2.16 - Определение критического коэффициента усиления

Некоторые особенности возникают при определении критического коэффициента усиления, если в состав передаточной функции разомкнутой системы входит колебательное звено с малым показателем затухания, причем начало асимптоты, соответствующей этому звену лежит ниже оси частот. В этом случае критический коэффициент усиления определяется в момент касания резонансного пика оси частот.