3.2.1.3 Дифференцирующее (идеальное) звено
Уравнение и передаточная функция звена:
Выходная величина пропорциональна скорости изменения входной величины.
Если входная и выходная величины имеют одинаковую размерность, то коэффициент измеряется в секундах. В этом случае его принято обозначать черези называть постоянной времени дифференцирующего звена.
Выражения для основных функций:
Как передаточная функция, так соответственно и частотные характеристики дифференцирующего звена являются обратными передаточной функции и соответствующим характеристикам интегрирующего звена.
Логарифмические частотные характеристики рассматриваемого звена приведены на рис. 3.2, а.
Рис. 3.2 — Частотные характеристики дифференцирующего
звена (а) и его реализация на операционном усилителе (б)
При построении ЛАЧХ удобно отложить точку с координатами , провести через нее прямую с наклоном плюс 20 дБ/дек, затем отложить на осиотрезок(поскольку, как правило,точкабудет находиться ниже оси) и провести параллельную прямую.
О том, что звено с представленным математическим описанием является идеальным, говорит, к примеру, переходная функция. Ни в каком реальном устройстве невозможно получить мгновенный скачек выходной величины бесконечной амплитуды.
Реальные дифференцирующие звенья обладают конечной инерционностью, вследствие чего осуществляемое ими дифференцирование не является точным. На рис. 3.2, б изображен вариант реализации дифференцирующего звена на операционном усилителе с конденсатором во входной цепи и резисторомв цепи обратной связи. Тогда
, ,
.
Неидеальность реализации звена определена напряжением питания усилителя, его выходное напряжение будет конечной величиной.
- Б.И. Коновалов, ю.М. Лебедев
- Оглавление
- Введение
- 1 Классификация сау
- 2 Математическое описание линейных непрерывных сау
- 2.1 Линеаризация статических характеристик и дифференциальных уравнений
- 2.2 Понятие передаточной функции
- 2.3 Частотные функции и характеристики
- 2.4 Временные функции и характеристики
- 2.5 Структурные схемы и их преобразование
- 3 Типовые звенья сау
- 3.1 Понятие типового звена. Классификация типовых динамических звеньев сау
- 3.2 Минимально-фазовые звенья
- 3.2.1 Звенья первого порядка
- 3.2.1.1 Пропорциональное (безынерционное) звено
- 3.2.1.2 Интегрирующее (идеальное) звено
- 3.2.1.3 Дифференцирующее (идеальное) звено
- 3.2.1.4 Инерционное звено (апериодическое звено первого порядка)
- 3.2.1.5 Форсирующее звено
- 3.2.1.6 Инерционное форсирующее звено
- 3.2.1.7 Изодромное звено
- 3.2.1.8 Реальное дифференцирующее звено
- 3.2.2 Звенья второго порядка
- 3.2.2.1 Апериодическое звено второго порядка
- 3.2.2.2 Колебательное звено
- 3.2.2.3 Консервативное звено
- 3.3 Особые звенья линейных сау
- 3.3.1 Неминимально-фазовые звенья
- 3.3.2 Звено чистого запаздывания
- 4 Устойчивость сау
- 4.1 Передаточные функции линейных непрерывных сау
- 4.2 Понятие устойчивости линейных непрерывных сау
- 4.3 Критерий устойчивости Гурвица
- 4.4 Критерий устойчивости Михайлова
- 4.5 Критерий устойчивости Найквиста
- 4.6Оценка устойчивости сау по логарифмическимчастотным характеристикам. Запасы устойчивости
- 4.7 Частотные характеристики разомкнутых систем
- 5 Оценка качества управления
- 5.1 Показатели качества управления в статическом режиме работы сау. Статические и астатические системы
- 5.2 Показатели качества в динамических режимах работы сау
- 5.3 Косвенные методы оценки качества переходного процесса
- 5.3.1 Частотные критерии оценки качества
- 5.3.2 Корневые критерии оценки качества
- 5.3.3 Интегральные критерии качества
- 6 Коррекция сау
- 6.1 Понятие коррекции. Способы коррекции сау
- 6.2 Синтез последовательных корректирующих устройств
- 6.3 Оптимальные характеристики сау. Настройка систем на технический и симметричный оптимумы
- Литература