4.2 Понятие устойчивости линейных непрерывных сау
Система называется устойчивой:
если после снятия воздействия по окончании переходного процесса возвращается в исходное равновесное состояние;
после изменения воздействия на постоянную величину по окончании переходного процесса приходит в новое равновесное состояние.
Определим условия устойчивости.
Пусть передаточная функция замкнутой по какому-либо из воздействий САУ имеет вид , причем она имеет толькопростых полюсов (корней характеристического уравнения). Подадим на вход САУ единичное ступенчатое воздействие амплитудой, тогда, в соответствии с формулой (2.14), изменение выходной величиныбудет описываться выражением
,
где — установившаяся (вынужденная) составляющая, однозначно связанная с изменением входной величины (частное решение неоднородного дифференциального уравнения с правой частью);— свободная составляющая, изменяющаяся во времени в течение переходного процесса (определяется общим решением однородного дифференциального уравнения-ой степени).
Именно свободная составляющая и определяет переходный процесс в системе.
В общем случае полюсы являются комплексными. При этом они образуют пары сопряженных чисел:
где может быть положительной или отрицательной величиной.
При этом, если , эта составляющая будет затухать. Наоборот, приполучатся расходящиеся колебания.
Отсюда следует, что общим условием затухания всех составляющих, а значит, и всего переходного процесса в целом является отрицательность вещественных частей всех полюсов передаточной функции САУ. Если хотя бы один полюс имеет положительную вещественную часть, переходный процесс будет расходящимся и система будет неустойчивой.
Изображая полюсы передаточной функции САУ (корни ее характеристического уравнения) точками на комплексной плоскости, как показано на рис. 4.2, условие устойчивости можно сформулировать еще так: необходимым и достаточным условием устойчивости САУ является расположение всех полюсов ее передаточной функции (корней характеристического уравнения) в левой комплексной полуплоскости.
Мнимая ось плоскости корней служит границей устойчивости. При этом можно выделить три случая выхода САУ на границу устойчивости, которые характеризуются соответственно:
нулевым полюсом ;
парой чисто мнимых полюсов ;
бесконечно удаленным полюсом .
Бесконечность на комплексной плоскости рассматривается как бесконечно удаленная точка, противоположная нулевой. Поэтому она тоже является границей между правой и левой полуплоскостями.
Рис. 4.2 — Расположение полюсов
передаточной функции устойчивой САУ
на комплексной плоскости
Вычисление корней весьма просто лишь для характеристического уравнения первой и второй степени. Но ведь для определения устойчивости не нужно знать абсолютное значение корней, необходимо знать лишь, в какой полуплоскости они находятся. Поэтому важное значение приобретают правила, позволяющие определять устойчивость системы без вычисления корней. Эти правила называют критериями устойчивости.
К основным критериям устойчивости относятся алгебраический критерий Гурвица и частотные критерии Михайлова и Найквиста.
- Б.И. Коновалов, ю.М. Лебедев
- Оглавление
- Введение
- 1 Классификация сау
- 2 Математическое описание линейных непрерывных сау
- 2.1 Линеаризация статических характеристик и дифференциальных уравнений
- 2.2 Понятие передаточной функции
- 2.3 Частотные функции и характеристики
- 2.4 Временные функции и характеристики
- 2.5 Структурные схемы и их преобразование
- 3 Типовые звенья сау
- 3.1 Понятие типового звена. Классификация типовых динамических звеньев сау
- 3.2 Минимально-фазовые звенья
- 3.2.1 Звенья первого порядка
- 3.2.1.1 Пропорциональное (безынерционное) звено
- 3.2.1.2 Интегрирующее (идеальное) звено
- 3.2.1.3 Дифференцирующее (идеальное) звено
- 3.2.1.4 Инерционное звено (апериодическое звено первого порядка)
- 3.2.1.5 Форсирующее звено
- 3.2.1.6 Инерционное форсирующее звено
- 3.2.1.7 Изодромное звено
- 3.2.1.8 Реальное дифференцирующее звено
- 3.2.2 Звенья второго порядка
- 3.2.2.1 Апериодическое звено второго порядка
- 3.2.2.2 Колебательное звено
- 3.2.2.3 Консервативное звено
- 3.3 Особые звенья линейных сау
- 3.3.1 Неминимально-фазовые звенья
- 3.3.2 Звено чистого запаздывания
- 4 Устойчивость сау
- 4.1 Передаточные функции линейных непрерывных сау
- 4.2 Понятие устойчивости линейных непрерывных сау
- 4.3 Критерий устойчивости Гурвица
- 4.4 Критерий устойчивости Михайлова
- 4.5 Критерий устойчивости Найквиста
- 4.6Оценка устойчивости сау по логарифмическимчастотным характеристикам. Запасы устойчивости
- 4.7 Частотные характеристики разомкнутых систем
- 5 Оценка качества управления
- 5.1 Показатели качества управления в статическом режиме работы сау. Статические и астатические системы
- 5.2 Показатели качества в динамических режимах работы сау
- 5.3 Косвенные методы оценки качества переходного процесса
- 5.3.1 Частотные критерии оценки качества
- 5.3.2 Корневые критерии оценки качества
- 5.3.3 Интегральные критерии качества
- 6 Коррекция сау
- 6.1 Понятие коррекции. Способы коррекции сау
- 6.2 Синтез последовательных корректирующих устройств
- 6.3 Оптимальные характеристики сау. Настройка систем на технический и симметричный оптимумы
- Литература