лекции / elekteh_lek / 5
5.5.1.2. Зависимость добротности контура q от сопротивления источника сигнала (Ri) и сопротивления нагрузки (Rн)
Схема замещения последовательного колебательного контура с учетом добавочных элементовRi, RH имеет вид (рис.5.24).
На рис. 5.25 показано эквивалентное преобразование паралельной RC цепи в последовательную, где. Добротность контура с учетом добавочных элементовRi, RH называется эквивалентной и определяется из следующего выражения
.
Она меньше собственной добротности контура Q. Для того, чтобы необходимо:
1) . Это означает, что последовательный колебательный контур необходимо питать от источника ЭДС, т.е. источника с нулевым сопротивлением.
2) . В этом случае нагрузка не будет влиять на добротность контура.
Содержание
- Глава 5
- 5.2. Параметры четырехполюсника
- 5.3. Частотные характеристики
- 5.4. Примеры расчёта частотных характеристик цепей
- Отсюда следует, что
- 5.5. Резонансные цепи. Колебательные контуры
- 5.5.1. Последовательный колебательный контур
- 5.5.1.2. Зависимость добротности контура q от сопротивления источника сигнала (Ri) и сопротивления нагрузки (Rн)
- 5.5.1.3. Последовательный колебательный контур как четырехполюсник
- 5.5.2. Параллельный колебательный контур
- 5.5.2.1. Резонансная характеристика параллельного колебательного контура
- 5.5.2.2. Влияние сопротивлений источника сигнала и нагрузки на добротность параллельного колебательного контура
- 5.6. Связанные колебательные контуры
- 5.6.1. Резонанс в связанных колебательных контурах
- 5.7. Операторные функции цепи
- Контрольные вопросы
- Глава 6 Импульсные сигналы в линейных цепях
- 6.1. Импульсные сигналы в линейных цепях
- 6.2. Временные характеристики цепей
- 6.3. Понятия о переходных процессах в электрических цепях и Понятие о коммутации
- 6.4. Методы анализа линейных цепей при импульсном воздействии
- 6.4.1. Классический метод анализа
- 6.4.2. Спектральный метод анализа
- 6.4.3. Операторный метод анализа Операторный метод расчета переходных процессов
- 6.4.4. Метод интеграла Дюамеля
- 6.5. Передача импульсных сигналов через простейшие цепи
- 6.5.1. Передача импульсных сигналов через дифференцирующую цепь
- 6.5.2. Передача импульсных сигналов через интегрирующую цепь
- Коэффициенты р находят, как корни характеристического уравнения
- 6.6. Пример расчета переходной характеристики двухконтурной цепи
- Коэффициенты находят, как корни характеристического уравнения:
- 6.7. Расчет переходных характеристик последовательного колебательного контура
- Коэффициенты находят, как корни характеристического уравнения:
- 6.8. Связь между дифференциальным уравнением и характеристиками электрической цепи
- Контрольные вопросы