6.8. Связь между дифференциальным уравнением и характеристиками электрической цепи
Для линейной цепи при произвольном входном сигнале х(t) связь между выходным и входным сигналом записывается в виде дифференциального уравнения.
2) Связь дифференциального уравнения с частотной передаточной функцией. По определению частотная функция, есть H(jω)=.
Если входной сигнал гармонический
(1)
если цепь линейная, то выходной сигнал обязательно гармонический
(2)
Подставим 1 и 2 в дифференциальное уравнение
в результате получим
.
Связь частотной с операторной функцией цепи Н(р).
По определению Н(р) = H(jω)|jω→ p. Отсюда получаем
.
4) Связь между импульсной и переходной характеристикой g(t) и h(t). Т.к. , то
Связь между g(t) и H(jω), H(p).
Из спектрального анализа следует выходной сигнал . Если, то спектр,
следовательно : ОПФ
следовательно : ППФ.
Таким образом, все способы описания электрической цепи связаны между собой.
- Глава 5
- 5.2. Параметры четырехполюсника
- 5.3. Частотные характеристики
- 5.4. Примеры расчёта частотных характеристик цепей
- Отсюда следует, что
- 5.5. Резонансные цепи. Колебательные контуры
- 5.5.1. Последовательный колебательный контур
- 5.5.1.2. Зависимость добротности контура q от сопротивления источника сигнала (Ri) и сопротивления нагрузки (Rн)
- 5.5.1.3. Последовательный колебательный контур как четырехполюсник
- 5.5.2. Параллельный колебательный контур
- 5.5.2.1. Резонансная характеристика параллельного колебательного контура
- 5.5.2.2. Влияние сопротивлений источника сигнала и нагрузки на добротность параллельного колебательного контура
- 5.6. Связанные колебательные контуры
- 5.6.1. Резонанс в связанных колебательных контурах
- 5.7. Операторные функции цепи
- Контрольные вопросы
- Глава 6 Импульсные сигналы в линейных цепях
- 6.1. Импульсные сигналы в линейных цепях
- 6.2. Временные характеристики цепей
- 6.3. Понятия о переходных процессах в электрических цепях и Понятие о коммутации
- 6.4. Методы анализа линейных цепей при импульсном воздействии
- 6.4.1. Классический метод анализа
- 6.4.2. Спектральный метод анализа
- 6.4.3. Операторный метод анализа Операторный метод расчета переходных процессов
- 6.4.4. Метод интеграла Дюамеля
- 6.5. Передача импульсных сигналов через простейшие цепи
- 6.5.1. Передача импульсных сигналов через дифференцирующую цепь
- 6.5.2. Передача импульсных сигналов через интегрирующую цепь
- Коэффициенты р находят, как корни характеристического уравнения
- 6.6. Пример расчета переходной характеристики двухконтурной цепи
- Коэффициенты находят, как корни характеристического уравнения:
- 6.7. Расчет переходных характеристик последовательного колебательного контура
- Коэффициенты находят, как корни характеристического уравнения:
- 6.8. Связь между дифференциальным уравнением и характеристиками электрической цепи
- Контрольные вопросы