6.4.3. Операторный метод анализа Операторный метод расчета переходных процессов
Применим при любых входных сигналах. Метод основан на том, что функцииf(t) вещественной переменной t, которую называюторигиналом,ставится в соответствие функцияF(p) комплексной переменнойp=s+jω, которую называютизображением. В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений (дифференцирование заменяется умножением на оператор р, а интегрирование – делением на него), что в свою очередь определяет переход от системы интегро-дифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. При решении этих уравнений находятся изображения и далее путем обратного перехода – оригиналы.
Порядок расчета переходных характеристик заключается в следующем:
1) находим операторное представление входного сигнала
- прямое преобразование Лапласа.
2) по известно схеме цепи находим операторную передаточную функцию цепи
3) находим операторное представление отклика
.
4) с помощью обратного преобразования Лапласа находим отклик цепи
Важнейшим моментом при этом в практическом плане является необходимость определения только независимых начальных условий, что существенно облегчает расчет переходных процессов в цепях высокого порядка по сравнению с классическим методом.
Изображение заданной функцииопределяется в соответствии спрямым преобразованием Лапласа:
В сокращенной записи соответствие между изображением и оригиналом обозначается, как:
Следует отметить, что если оригинал увеличивается с ростом t, то для сходимости интеграла (1) необходимо более быстрое убывание модуля. Функции, с которыми встречаются на практике при расчете переходных процессов, этому условию удовлетворяют.
В качестве примера в табл. 1 приведены изображения некоторых характерных функций, часто встречающихся при анализе нестационарных режимов.
Изображения типовых функций
Оригинал | А | |||||
Изображение |
Свойства изображений
Изображение суммы функций равно сумме изображений слагаемых:
.
При умножении оригинала на коэффициент на тот же коэффициент умножается изображение:
.
С использованием этих свойств и данных табл. 1, можно показать, например, что
.
Изображения производной и интеграла
В курсе математики доказывается, что если , то, где- начальное значение функции.
Таким образом, для напряжения на индуктивном элементе можно записать
или при нулевых начальных условиях
.
Отсюда операторное сопротивление катушки индуктивности
.
Аналогично для интеграла: если , то.
С учетом ненулевых начальных условий для напряжения на конденсаторе можно записать:
.
Тогда
или при нулевых начальных условиях
,
откуда операторное сопротивление конденсатора
.
Закон Ома в операторной форме
Пусть имеем некоторую ветвь (см. рис. 1), выделенную из некоторой
сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.
Для мгновенных значений переменных можно записать:
.
Тогда на основании приведенных выше соотношений получим:
.
Отсюда
, | (2) |
где - операторное сопротивление рассматриваемого участка цепи.
Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлениюветви в цепи синусоидального тока при замене оператора р на.
Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.
Законы Кирхгофа в операторной форме
Первый закон Кирхгофа: алгебраическая сумма изображений токов, сходящихся в узле, равна нулю
.
Второй закон Кирхгофа: алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура
.
При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде
.
В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 - ; 2 -.
В первом случае в соответствии с законом Ома .
Тогда
и
.
Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов:
откуда ;и.
Переход от изображений к оригиналам
Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:
1. Посредством обратного преобразования Лапласа
,
которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:
.
На практике этот способ применяется редко.
2. По таблицам соответствия между оригиналами и изображениями
В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.
Например, для изображения тока в цепи на рис. 5 можно записать
.
Тогда в соответствии с данными табл. 1
,
что соответствует известному результату.
3. С использованием формулы разложения
Пусть изображение искомой переменной определяется отношением двух полиномов
,
где .
Это выражение может быть представлено в виде суммы простых дробей
, | (3) |
где - к-й корень уравнения.
Для определения коэффициентов умножим левую и правую части соотношения (3) на ():
.
При
.
Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем
.
Таким образом,
.
Поскольку отношение есть постоянный коэффициент, то учитывая, что, окончательно получаем
. | (4) |
Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е., то уравнение (4) сводится к виду
.
В заключение раздела отметим, что для нахождения начального и конечногозначений оригинала можно использоватьпредельные соотношения
которые также могут служить для оценки правильности полученного изображения.
- Глава 5
- 5.2. Параметры четырехполюсника
- 5.3. Частотные характеристики
- 5.4. Примеры расчёта частотных характеристик цепей
- Отсюда следует, что
- 5.5. Резонансные цепи. Колебательные контуры
- 5.5.1. Последовательный колебательный контур
- 5.5.1.2. Зависимость добротности контура q от сопротивления источника сигнала (Ri) и сопротивления нагрузки (Rн)
- 5.5.1.3. Последовательный колебательный контур как четырехполюсник
- 5.5.2. Параллельный колебательный контур
- 5.5.2.1. Резонансная характеристика параллельного колебательного контура
- 5.5.2.2. Влияние сопротивлений источника сигнала и нагрузки на добротность параллельного колебательного контура
- 5.6. Связанные колебательные контуры
- 5.6.1. Резонанс в связанных колебательных контурах
- 5.7. Операторные функции цепи
- Контрольные вопросы
- Глава 6 Импульсные сигналы в линейных цепях
- 6.1. Импульсные сигналы в линейных цепях
- 6.2. Временные характеристики цепей
- 6.3. Понятия о переходных процессах в электрических цепях и Понятие о коммутации
- 6.4. Методы анализа линейных цепей при импульсном воздействии
- 6.4.1. Классический метод анализа
- 6.4.2. Спектральный метод анализа
- 6.4.3. Операторный метод анализа Операторный метод расчета переходных процессов
- 6.4.4. Метод интеграла Дюамеля
- 6.5. Передача импульсных сигналов через простейшие цепи
- 6.5.1. Передача импульсных сигналов через дифференцирующую цепь
- 6.5.2. Передача импульсных сигналов через интегрирующую цепь
- Коэффициенты р находят, как корни характеристического уравнения
- 6.6. Пример расчета переходной характеристики двухконтурной цепи
- Коэффициенты находят, как корни характеристического уравнения:
- 6.7. Расчет переходных характеристик последовательного колебательного контура
- Коэффициенты находят, как корни характеристического уравнения:
- 6.8. Связь между дифференциальным уравнением и характеристиками электрической цепи
- Контрольные вопросы