Коэффициенты находят, как корни характеристического уравнения:
Найдем постоянные интегрирования А1, А2.
Их находят из начальных условий, т.е. при t=+0, для искомой функции и ее производных . Значения токов и напряжений в начальный момент времени после коммутации (при t=+0) определяют из схемы замещения исходной цепи (рис.6.22б), образованной после коммутации с учетом законов коммутации, по законам Кирхгофа. При нулевых начальных условиях наличие индуктивности равносильно разрыву цепи (iL(-0) = iL(+0)), а емкости - короткому замыканию (uC(-0) = uC(+0)).
Аналогичную схему замещения можно получить, если считать что ступенчатому сигналу в начальный момент времени (t=+0) соответствует гармонический с бесконечно большой частотой (ω∞).
Схема после коммутации (при t=+0, ω∞) приведена на рис.6.22б, а произвольные постоянные A1 и А2 находят из уравнений:
Из этой системы мы находим
Запишем общего решение относительно u2(t):
Окончательное решение зависит от характера корней характеристического уравнения.
а) если , то решение равно сумме экспонент (рис.623а), оно не периодическое и его (режим переходного процесса) называют апериодическим.
б) если, то корни будут комплексными. В этом случае решение представляет собой гармоническую функцию времени убывающую по экспоненте (рис.6.23б). Такое решение (режим переходного процесса) называют колебательным.
в) если , то корни одинаковы. Такой режим называют критическим.
Отсюда условием критического режима
является соотношение Q=2.
- Глава 5
- 5.2. Параметры четырехполюсника
- 5.3. Частотные характеристики
- 5.4. Примеры расчёта частотных характеристик цепей
- Отсюда следует, что
- 5.5. Резонансные цепи. Колебательные контуры
- 5.5.1. Последовательный колебательный контур
- 5.5.1.2. Зависимость добротности контура q от сопротивления источника сигнала (Ri) и сопротивления нагрузки (Rн)
- 5.5.1.3. Последовательный колебательный контур как четырехполюсник
- 5.5.2. Параллельный колебательный контур
- 5.5.2.1. Резонансная характеристика параллельного колебательного контура
- 5.5.2.2. Влияние сопротивлений источника сигнала и нагрузки на добротность параллельного колебательного контура
- 5.6. Связанные колебательные контуры
- 5.6.1. Резонанс в связанных колебательных контурах
- 5.7. Операторные функции цепи
- Контрольные вопросы
- Глава 6 Импульсные сигналы в линейных цепях
- 6.1. Импульсные сигналы в линейных цепях
- 6.2. Временные характеристики цепей
- 6.3. Понятия о переходных процессах в электрических цепях и Понятие о коммутации
- 6.4. Методы анализа линейных цепей при импульсном воздействии
- 6.4.1. Классический метод анализа
- 6.4.2. Спектральный метод анализа
- 6.4.3. Операторный метод анализа Операторный метод расчета переходных процессов
- 6.4.4. Метод интеграла Дюамеля
- 6.5. Передача импульсных сигналов через простейшие цепи
- 6.5.1. Передача импульсных сигналов через дифференцирующую цепь
- 6.5.2. Передача импульсных сигналов через интегрирующую цепь
- Коэффициенты р находят, как корни характеристического уравнения
- 6.6. Пример расчета переходной характеристики двухконтурной цепи
- Коэффициенты находят, как корни характеристического уравнения:
- 6.7. Расчет переходных характеристик последовательного колебательного контура
- Коэффициенты находят, как корни характеристического уравнения:
- 6.8. Связь между дифференциальным уравнением и характеристиками электрической цепи
- Контрольные вопросы