Коэффициенты р находят, как корни характеристического уравнения
RCр1+1=0. Отсюда р 1= - (RC)-1.
5) Найдем постоянную интегрирования A1.
Ее находим из общего решения при t0 и схемы замещения исходной цепи при t0, ω ∞. Она приведена на рис. 6.16б. Запишем уравнение откуда и найдем А1
, А1= - Е.
6) Запишем общего решение:
.
Выходное напряжение представляет собой импульс, нарастающий по экспоненте, который характеризуется двумя параметрами:
1. Е – амплитуда импульса;
2. τ - постоянная времени цепи.
Определим выходной сигнал при t=τ.
Отсюда следует, что постоянная времени это время за которое импульс возрастая по экспоненциальному закон изменяется от 0 до уровня 0,63 от своего стационарного значения Е.
Иногда пользуются третьим параметром. tуст. – время установления выходного напряжения, это время за которое сигнал достигает свое стационарное значение, с заданной точностью от амплитуды импульса. Так время установление на уровне 0,9 и 0,95 составляет tуст.0.9 =2,3τ; tуст.0.95 =3τ.
Б. Пусть входной сигнал одиночный прямоугольный импульс (рис.6.18) амплитудой Е и длительностью tu. Такой импульс представляет собой суперпозицию двух ступенчатых сигналов и записывается как
.
Зная отклик на ступенчатый сигнал, и используя принцип суперпозиции можно записать аналитическое выражение для выходного сигнала:
На рис 6.19 показаны три временных диаграммы выходного сигнала при различных соотношения между τ и tи.
Аналогичными свойствами обладает цепь, состоящая из RL элементов, приведенная на рис.6.20. Она называется интегрирующая RL-цепь.
- Глава 5
- 5.2. Параметры четырехполюсника
- 5.3. Частотные характеристики
- 5.4. Примеры расчёта частотных характеристик цепей
- Отсюда следует, что
- 5.5. Резонансные цепи. Колебательные контуры
- 5.5.1. Последовательный колебательный контур
- 5.5.1.2. Зависимость добротности контура q от сопротивления источника сигнала (Ri) и сопротивления нагрузки (Rн)
- 5.5.1.3. Последовательный колебательный контур как четырехполюсник
- 5.5.2. Параллельный колебательный контур
- 5.5.2.1. Резонансная характеристика параллельного колебательного контура
- 5.5.2.2. Влияние сопротивлений источника сигнала и нагрузки на добротность параллельного колебательного контура
- 5.6. Связанные колебательные контуры
- 5.6.1. Резонанс в связанных колебательных контурах
- 5.7. Операторные функции цепи
- Контрольные вопросы
- Глава 6 Импульсные сигналы в линейных цепях
- 6.1. Импульсные сигналы в линейных цепях
- 6.2. Временные характеристики цепей
- 6.3. Понятия о переходных процессах в электрических цепях и Понятие о коммутации
- 6.4. Методы анализа линейных цепей при импульсном воздействии
- 6.4.1. Классический метод анализа
- 6.4.2. Спектральный метод анализа
- 6.4.3. Операторный метод анализа Операторный метод расчета переходных процессов
- 6.4.4. Метод интеграла Дюамеля
- 6.5. Передача импульсных сигналов через простейшие цепи
- 6.5.1. Передача импульсных сигналов через дифференцирующую цепь
- 6.5.2. Передача импульсных сигналов через интегрирующую цепь
- Коэффициенты р находят, как корни характеристического уравнения
- 6.6. Пример расчета переходной характеристики двухконтурной цепи
- Коэффициенты находят, как корни характеристического уравнения:
- 6.7. Расчет переходных характеристик последовательного колебательного контура
- Коэффициенты находят, как корни характеристического уравнения:
- 6.8. Связь между дифференциальным уравнением и характеристиками электрической цепи
- Контрольные вопросы