8.2.2. Электрические фильтры
В современных системах связи широко используется так называемый частотный принцип разделения сигналов. В соответствии с этим принципом каждому сообщению или виду сигнала отводится своя полоса частот. Так строится, например, радиовещание и телевещание в нашей и других странах. Радиостанции и телевизионные передатчики работают в строго определенных не перекрывающихся диапазонах длин волн. Важнейшую роль при обработке сигналов в таких системах играют электрические фильтры.
Электрический фильтр˗ это устройство, предназначенное для пропускания сигналов только в определенной полосе частот; сигналы, частоты которых не попадают в эту полосу, подавляются. Фильтры широко используются в вычислительной технике. В источниках питания фильтры применяются для подавления помех, наводок и высокочастотных шумов. На материнских платах персональных компьютеров, как правило, устанавливаются несколько фильтров, устраняющих взаимное влияние сигналов друг на друга. Персональные ЭВМ рекомендуется подключать к сети через фильтр, который не пропускает импульсные помехи, высокочастотные наводки и шумы.
По диапазону пропускаемых частот фильтры делятся на фильтры нижних частот(ФНЧ), фильтрывысоких частот(ФВЧ),полосовые(ПФ) изаграждающие(ЗФ) (или режекторные (РФ)) фильтры. Условные обозначения фильтров показаны на рис. 8.16. ФНЧ пропускают сигналы с низкими частотами и подавляют сигналы с высокими частотами. ФВЧ, наоборот, пропускают сигналы с высокими частотами и подавляют сигналы с низкими частотами. ПФ пропускают сигналы только в определенной полосе частот вблизи некоторой центральной частоты, расположенной, как правило, в области относительно высоких частот. ПФ не пропускает сигналы с низкими и высокими частотами. Наконец, ЗФ пропускает сигналы с низкими и высокими частотами и задерживает сигналы с частотами, расположенными вблизи центральной частоты заграждающего фильтра.
Рис. 8.16. Условные обозначения фильтров
Фильтр является четырехполюсником. Поэтому для описания свойств фильтра используются функции четырехполюсника, из которых в первую очередь - комплексный коэффициент передачи по напряжению гдеи˗ входное и выходное напряжения фильтра соответственно. Этот коэффициент передачи позволяет получить основную характеристику фильтра –амплитудно-частотную характеристику (АЧХ).АЧХ определяется как модулькомплексного коэффициента передачи фильтра:. АЧХ легко определить экспериментально, измеряя с помощью вольтметра входное и выходное напряжения и рассчитывая отношение этих напряжений на разных частотах. По значению модуля комплексного коэффициента передачиможно судить о подавлении или пропускании сигнала. Если, то выходное напряжение примерно равно входному напряжению и, следовательно, сигнал с частотойпропускается фильтром. Наоборот, при малых значениях АЧХ когда, получим подавление сигнала с частотой.
Типовые амплитудно-частотные характеристики реальных ФНЧ, ФВЧ, ПФ и ЗФ приведены на рис. 8.17.На этом рисунке для ФНЧ и ФВЧ показана граничная частота, на которой значение Ачк равнораз. Как правило, граничную частоту считают границей полосы пропускания фильтра. Для ПФ и ЗФ показаны:˗ центральные резонансные частоты полосы пропускания и полосы задерживания;П˗ полосы пропускания и задерживания соответственно. Отметим, что на практике кроме уровня, равного 0,707 , используют другие уровни для определения граничных частот, полос пропускания и задерживания. Кроме того, иногда вводятся дополнительные граничные частоты. Например, дополнительная частотапоказана на рис. 8.17а. Частотав этом случае определяет границу полосы задерживания фильтра.
Избирательные свойства фильтра тем лучше, чем ближе форма АЧХ к прямоугольной. Поэтому вторая АЧХ, показанная на рис. 8.17б, принадлежит фильтру, изготовленному с лучшим качеством.
Кроме АЧХ для описания фильтра используют фазочастотную характеристику (ФЧХ). ФЧХ определяется как начальная фаза (аргумент) комплексного коэффициента передачи фильтра: ,где и – начальные фазы выходного и входного сигналов соответственно. Из формулы следует, что ФЧХ определяет фазовый сдвиг, добавляемый фильтром к начальной фазе входного сигнала. Как правило, фазочастотную характеристику фильтра требуется знать при использовании систем связи с так называемой угловой модуляцией, когда информация содержится в изменениях частоты и фазы сигнала.
Рис. 8.17. Амплитудно-частотные характеристики фильтров
Продолжим классификацию фильтров. По способу изготовления различают следующие типы фильтров: кварцевые, электромеханические, фильтры на коаксиальных линиях передачи, фильтры на поверхностных акустических волнах, фильтры на переключаемых конденсаторах, активные фильтры, на операционных усилителях, LC-фильтры - фильтры, содержащие катушки индуктивности и конденсаторы (отметим, что в схемыLC-фильтров часто дополнительно включаются резисторы) и т. д.
Как правило, для упрощения теоретического анализа все разновидности используемых на практике фильтров сводят к LC- фильтрам. При этом конструктивные элементы реальных фильтров замешают их электрическими аналогами в виде катушек, конденсаторов и резисторов. Ниже рассмотрение фильтров будет ограничено анализом толькоLC-фильтров.
Для построения LC-фильтров применяют Г-, П- и Т-образные звенья, показанные на рис. 8.18. В этих схемах используются одинаковые сопротивленияZ1иZ2. Поэтому все три фильтра будут иметь примерно одинаковые полосы пропускания.
Рис. 8.18. Конструкция фильтров
Фильтры, состоящие из нескольких каскадно-включенных цепей, изображенных на рис. 8.18, называются многозвенными.Например, П- или Т-звено можно получить каскадным соединением двух Г-звеньев.
Простейшие схемы однозвенных ФНЧ Г-типа, широко используемых на практике, приведены на рис. 8.19. Избирательные свойства этих фильтров объясняются свойствами катушки и конденсатора. Как известно, индуктивное сопротивление катушки увеличивается с ростом частоты, а емкостное сопротивление конденсатора, наоборот, с ростом частоты уменьшается.
Рис. 8.19. Схемы однозвенных фильтров
Например, работа фильтра, изображенного на рис. 8.18, а, описывается следующим образом. При увеличении частоты входного сигнала сопротивление конденсатора уменьшается: . Выходное напряжение на конденсаторе и, следовательно, высокочастотный сигнал через фильтр не проходит (подавляется). Если, то и.Следовательно, низкочастотный сигнал проходит через фильтр с малым затуханием. АЧХ фильтра низких частот приведена на рис. 8.17, а. Аналогично объясняется работа других фильтров. Отметим, что лучшую избирательность будет давать схема, приведенная на рис. 8.19в, так как в этой схеме используются частотные свойства не одного, а двух реактивных элементов.
Рис. 8.20. Схемы ФНЧ на основе П- и Т-звеньев
Дальнейшее улучшение прямоугольности частотных характеристик ФНЧ получим при использовании П- и Т-звеньев (рис. 8.20) и при соединении нескольких звеньев в цепочку.
Часто используемые на практике простейшие схемы однозвенных ФВЧ приведены на рис. 8.21. Работа этих фильтров также объясняется частотными свойствами катушки и конденсатора. Как и для ФНЧ, использование П- и Т-звеньев улучшает прямоугольность амплитудно-частотных характеристик фильтров.
Рис. 8.21. Схемы однозвенных ФВЧ
- Оглавление
- Общие сведения об электрических и радиотехнических цепях
- Главные задачи электротехники и радиотехники
- Радиотехнический канал связи
- Классификация сигналов
- Вопросы и задания для самопроверки:
- Сигналы и их основные характеристики
- Энергетические характеристики вещественного сигнала
- Корреляционные характеристики детерминированных сигналов
- Вопросы и задания для самопроверки:
- Сигналы и спектры
- Спектры сигналов
- Простейшие разрывные функции
- Методы анализа электрических цепей
- Вопросы и задания для самопроверки
- Спектральный анализ сигналов
- Представление периодического воздействия рядом Фурье
- Спектры амплитуд и фаз периодических сигналов
- Спектральный анализ цепи
- Представление непериодического воздействия интегралом Фурье
- Спектральные плотности амплитуд и фаз непериодических сигналов
- Примеры определения спектральной плотности сигналов
- Определение активной длительности сигнала и активной ширины его спектра
- Вопросы и задания для самопроверки:
- Комлексная передаточная функция и частотные характеристики цепи
- Спектральный анализ цепей при непериодических воздействиях
- Вопросы и задания для самопроверки гл. 5, 6:
- Представление непериодических сигналов интегралом лапласа
- Вопросы и задания для самопроверки:
- Электрические цепи радиотехнических сигналов
- Цепи с распределенными параметрами
- 8.1.1 Длинные линии и телеграфные сигналы
- 8.1.2. Коэффициент отражения, стоячие и смешанные волны
- 8.1.3. Задерживающие цепи (Линия задержки)
- Частотный принцип преобразования радиотехнических сигналов
- 8.2.1 Модулированные сигналы и их спектры
- 8.2.2. Электрические фильтры
- 8.2.3. Нелинейный элемент и воздействие на него одного сигнала.
- 8.2.4. Воздействие на нелинейный элемент двух сигналов.
- Вопросы и задания для самопроверки:
- Литература
- 107996, Москва, ул. Стромынка, 20