6.4. Свойства случайных процессов
1. Стационарность. Случайные процессы, статистические характеристики которых одинаковы во всех сечениях называются стационарными случайными процессами. Различаются стационарные случайные процессы в узком смысле и широком смысле. Случайный процесс стационарен в узком смысле, если любая n-мерная плотность вероятности инвариантна относительно временного сдвига :
(6.9)
Если же ограничить требования тем, чтобы математическое ожидание m и дисперсия процесса не зависели от времени, а функция корреляции зависела лишь от разности, т.е., то подобный случайный процесс будет стационарен в широком смысле. Из стационарности в узком смысле следует стационарность в широком смысле, но не наоборот. Как следует из определения, функция корреляции стационарного случайного процесса является чётной:
Кроме того, абсолютные значения этой функции при любом не превышают её значения при:
(6.10)
Часто удобно использовать нормированную функцию корреляции:
(6.11)
Для которой
2. Эргодичность. Стационарный случайный процесс называется эргодическим, если при нахождении его моментных функций усреднение по статистическому ансамблю можно заменить усреднением по времени.
Операция усреднения выполняется над единственной реализацией x(t), длительность Т которой теоретически может быть сколь угодно велика. Обозначая усреднение по времени угловыми скобками, запишем математическое ожидание эргодического случайного процесса:
, (6.12)
которое равно постоянной составляющей выбранной реализации.
Дисперсия подобного процесса.
(6.13)
Поскольку величина представляет собой мощность реализации, а величина- мощность постоянной составляющей, дисперсия имеет наглядный смысл мощности флуктуационной составляющей эргодического процесса.
Аналогично находим функцию корреляции:
(6.14)
Достаточным условием эргодичности случайного процесса, стационарного в широком смысле, является стремление к нулю функции корреляции при неограниченном росте временного сдвига :
(6.15)
Это требование можно несколько ослабить и применительно к гармоническому процессу со случайной начальной фазой. Случайный процесс эргодичен если выполняется условие Слуцкого:
(6.16)
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)