4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
Пусть имеется два вещественных сигнала U(t) и V(t). Назовём взаимным энергетическим спектром двух вещественных сигналов функцию (4.1)
такую что:
(4.2)
причём:
(4.3)
Взаимный энергетический спектр - функция, принимающая в общем случае, комплексные значения:
(4.4)
где - чётная, анечётная функция частоты. Вклад в интеграл даёт только вещественная часть, поэтому:
(4.5)
Последняя формула даёт возможность проанализировать взаимосвязь сигналов. Более того формула (4.5) указывает путь, позволяющий уменьшить связи между двумя сигналами, добившись в пределе их ортогональности. Для этого один из сигналов нужно подвергнуть обработке частотным фильтром. К этому фильтру предъявляется требование не пропускать на выход спектральные составляющие, находящиеся в пределах частотного интервала, где вещественная часть взаимного энергетического спектра велика. Частотная зависимость к-та передачи такого сигнала ортогонализирующего фильтра будет обладать резко выраженным минимумом в пределах указанной области частот.
Если в формуле (4.1) сигналы U(t) и V(t) считать одинаковыми то эта формула приобретает вид:
(4.6)
Величина носит название спектральной плотности энергии сигналаU(t) или, короче, его энергетического спектра. Формула равенства Парсеваля при этом запишется так:
(4.7)
Подход, основанный на спектральном представлении энергии сигнала, выгодно отличается относительной простотой. Энергии, отвечающие различным областям частотной оси, складываются так же, как вещественные числа. Однако, изучая сигнал с помощью его энергетического спектра, мы неизбежно теряем информацию, которая заключается в фазовом спектре сигнала, поскольку в соответствии с формулой (4.6) энергетический спектр есть квадрат модуля спектральной плотности и не зависит от её фазы. Однако понятие энергетического спектра широко применяется для инженерных оценок, устанавливающих ширину спектра сигнала и копи:
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)