Тема 2.4. Информация в непрерывных сигналах
Обобщим теперь понятия энтропии и взаимной информации на ансамбли непрерывных сигналов. Пусть - случайная величина (сечение или отсчёт случайного сигнала), определённая в некоторой непрерывной области, и её распределение вероятностей характеризуется плотностью.
Разобьём область значений на небольшие интервалы протяжённостью. Вероятность того, чтолежит в интервале,+, то есть, приблизительно равна, причём приближение тем точнее, чем меньше интервал. Степень неожиданности такого события равна. Если значенияв пределах конечного интервалазаменить значениямив начале интервала, то непрерывный ансамбль заменится дискретным, а его энтропия определится как:
Будем теперь увеличивать точность определения значения , уменьшая интервал. В пределе, придолжна получиться энтропия непрерывной случайной величины:
(2.19)
Второй член в полученном выражении стремится к и совершенно не зависит от распределения вероятностей. Это значение , что собственная информация любой непрерывной случайной величины бесконечно велика. Тем не менее, взаимная информация между двумя непрерывными ансамблями, как правило, остаётся конечной. Такова будет, в частности, взаимная информация между переданным и принятым сигналами, так что по каналу связи информация передаётся с конечной скоростью.
Обратим внимание на первый член в данной формуле. Он является конечным и определяется плотностью распределения вероятности . Его называют дифференциальной энтропией и обозначают:
(2.20)
Попытаемся теперь определить взаимную информацию между двумя непрерывными случайными величинами и. Разбив области определенияисоответственно на небольшие интервалыи, заменим эти непрерывные величины дискретными так же, как это делалось при выводе формулы. Исходя из этого выражения можно определить взаимную информацию между непрерывными величинамии:
(2.21)
При этом никаких явных бесконечностей не появилось, и действительно, в обычных случаях взаимная информация оказывается конечной. С помощью простых преобразований её можно представить и в таком виде:
(2.22)
Здесь - определённая ранее дифференциальная энтропия, а- условная дифференциальная энтропия. Легко убедиться, что основные свойства взаимной информации остаются справедливыми и в данном случае.
В качестве примера найдём дифференциальную энтропию случайной величины с нормальным распределением вероятности:
, (2.23)
где математическое ожидание, а- дисперсия.
Подставив (2.23) в (2.20), найдём:
Первый интеграл по общему свойству плотности вероятности равен 1, а второй – по определению дисперсии равен . Окончательно
(2.24)
Таким образом, диффиринциал энтропия гауссовский случайной величины не зависит от её математического ожидания и монотонно возрастает с увеличением дисперсии.
В заключение укажем одно важное свойство нормального распределения: из всех непрерывных случайных величин с одинаковой дисперсиейнаибольшую дифференциальную энтропию имеет величина с нормальным распределением.
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)