7.1. Дискретное преобразование Фурье
Исследуем особенности спектрального представления дискретного сигнала, который задан на отрезке [0,T] своими отсчётами , взятыми соответственно в моменты времени, полное число отсчётов(- интервал дискретизации)
Методика изучения таких дискретных сигналов состоит в том, что полученная выборка отсчётных значений мысленно повторяется бесконечное число раз. В результате сигнал становится периодическим.
Сопоставив такому сигналу некоторую математическую модель можно воспользоваться разложением в ряд Фурье и найти соответствующие амплитудные коэффициенты. Совокупность этих коэффициентов образует спектр дискретного периодического сигнала.
Воспользуемся моделью в виде последовательности дельта-импульсов. Тогда исходное колебание x(t) будет выражено формулой
(7.1)
Где – выборочные значения аналогового сигнала.
Представим этот сигнал комплексным рядом Фурье.
(7.2)
С коэффициентами:
(7.3)
Подставляя формулу (7.1) в (7.3) получим
- дискретное преобразование Фурье (ДПФ) (7.4)
Основные свойства ДПФ
1. ДПФ- линейное преобразование т.е. сумме сигналов отвечает сумма их ДПФ
2. Число различных коэффициентов вычисляемых по формуле (7.4) равно числуN за период; при n=N коэффициент
3. Коэффициентов (постоянная составляющая) является средним значением всех отсчётов:
Если N- чётное число, то
5. Пусть отсчётные значения – вещественные числа. Тогда коэффициенты ДПФ, номера которых располагаются симметрично относительноN/2, образуют сопряжённые пары:
Задача дискретного спектрального анализа может быть поставлена и по-иному. Допустим, что коэффициенты , образующие ДПФ, заданы. Положим в формуле (7.2)и учтём что суммируется лишь конечное число членов ряда, которые отвечают гармоникам, содержащимся в спектре исходного сигнала.
Таким образом получаем формулу для вычисления отсчётных значений
- обратное дискретное преобразование
Фурье (ОДПФ) (7.5)
Пример:
Дискретный сигнал на интервале своей периодически задан шестью равноотстоящими отсчётами
Найти коэффициенты ДПФ этого сигнала
k – номер отсчёта
n – номер гармоники
1)
2)
3)
4)
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)