2.2 Взаимная информация
Определим теперь информацию, содержащуюся в одном ансамбле относительно другого, например, в принятом сигнале относительно переданного сообщения. Для этого рассмотрим сообщение двух дискретных ансамблей A и B, вообще говоря, зависимых. Его можно интерпретировать как пару ансамблей сообщений, либо как ансамбли сообщения и сигнала, с помощью которого сообщение передаётся, либо как ансамбли сигналов на входе и выходе канала связи и т. д. Пусть P(ak ,bl)совместная вероятность реализаций ak и bl . Cовместной энтропией ансамблей A и B будем называть:
(2.6)
Введём также понятие условной энтропии:
(2.7)
где P(ak / bl)- условная вероятность ak , если имеет место bl , здесь математические..
Из теоремы умножения вероятностей следует, что.
(2.8)
Для условной энтропии справедливо двойное неравенство:
(2.9)
Рассмотрим два крайних случая:
Равенство имеет место в том случае, когда, зная реализацию, можно точно установить реализацию. Другими словами,содержит полную информацию об.
Другой крайний случай , когда имеет место, если событияинезависимые. В этом случае знание реализациине уменьшает неопределённости, т.е.не содержит ни какой информации об А.
В общем случае, что имеет место на практике, условная энтропия меньше безусловнойи знание реализацииснимает в среднем первоначальную неопределённость. Естественно, назвать разностьколичеством информации, содержащейся вотносительно. Её называют также взаимной информацией междуии обозначают:
(2.10)
Подставляя в эту формулу значения H(A) и H(A/B) выразим взаимную информацию через распределение вероятностей:
(2.11)
Если воспользоваться теоремой умножения , то можно записатьв симметричной форме т.к.:
(2.12)
Взаимная информация измеряется в тех же единицах, что и энтропия. Величина показывает, сколько мы в среднем получаем бит информации о реализации ансамбля, наблюдая реализацию ансамбля.
Сформулируем основные свойства взаимной информации:
, причём равенство имеет место тогда и только тогда, когда инезависимы между собой
, то есть содержит столько же информации относительно, сколькосодержит относительно. Это свойство вытекает из симметрии выражения. Поэтому можно также записать:
(2.13)
3. , причём равенство имеет место, когда по реализацииможно точно установить реализацию.
4. , причём равенство имеет место, когда по реализацииможно точно установить реализацию.
5. Полагая и учитывая, чтополучим:
(2.14)
Это позволяет интерпретировать энтропию источника как его собственную информацию, то есть информацию, содержащуюся в ансамбле о самом себе.
Пусть - ансамбль дискретных сообщений, а- ансамбль дискретных сигналов, в которые преобразуются сообщения. Тогдав том и только в том случае, когда преобразованиеобратимо. При необратимом преобразованиии разностьможно назвать потерей информации при преобразовании. Её называют ненадёжностью. Таким образом, информация не теряется только при обратимых преобразованиях.
Если - среднее время передачи одного сообщения, то разделив наформулыH(A/B) и I(A,B) и обозначая:
, , (2.15)
получим соответствующие равенства для энтропии и количества информации, рассчитанных не на одно сообщение, а на единицу времени. Величина называется скоростью передачи информации отк(или наоборот).
Рассмотрим пример: если - ансамбль сигналов на входе дискретного канала, а- ансамбль сигналов на его выходе, то скорость передачи информации по каналу.
(2.16)
- производительность источника передаваемого сигнала .
“производительность канала”, то есть полная собственная информация о принятом сигнале за единицу времени.
Величина представляет собой скорость “утечки” информации при прохождении через канал, а- скорость передачи посторонней информации, не имеющий отношения ки создаваемой присутствующими в канале помехами. Соотношение междуизависит от свойств канала. Так, например, при передаче телефонного сигнала по каналу с узкой полосой пропускания, недостаточной для удовлетворительного воспроизведения сигнала, и с низким уровнем помех теряется часть полезной информации, но почти не получается бесполезной. В этом случае. Если же расширяется полоса, сигнал воспроизводится точно, но в паузах ясно прослушиваются “наводки” от соседнего телефонного канала, то, почти не теряя полезной информации, можно получить много дополнительной, как правило, бесполезной информации и.
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)