6.1. Случайные процессы. Основные понятия и определения
Теория случайных величин изучает вероятностные явления «в статике»,рассматривая их как некоторые зафиксированные результаты экспериментов. Для описания сигналов, которые отображают развивающиеся, во времени случайные явления, методы классической теории вероятностей оказываются недостаточными. Подобные задачи изучает особая ветвь математики, получившая название теории случайных процессов.
По определению, случайный процесс x(t) – это особого вида функция, характеризующаяся тем, что в любой момент времени t принимаемые ею значения является случайными величинами.
Детерминированные сигналы мы отображаем их функциональными зависимостями или осциллограммами. Если же речь идёт о случайных процессах, то фиксируя на определённом промежутке времени мгновенные значения случайного сигнала, мы получаем лишь единственную реализацию случайного процесса. Случайный процесс представляет собой бесконечную совокупность таких реализаций, образующих статистический ансамбль. Например, ансамблем является набор сигналов , которые можно одновременно наблюдать на выходах совершенно одинаковых генераторов шумового напряжения или на выходах много канальной системы связи.
Совсем необязательно, чтобы реализации случайного процесса представлялись функциями со сложным, нерегулярным во времени поведением. Часто приходится рассматривать случайные процессы, образованные, например, всевозможными гармоническими сигналами , у которых один из трёх параметров- случайная величина, принимающая определённое значение в каждой реализации. Случайный характер такого сигнала заключен в невозможности заранее до опыта знать значение этого параметра.
Случайные процессы, образованные реализациями, зависящими от конечного числа параметров, принято называть квазидетерминированными случайными процессами.
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)