Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
Под информацией понимают совокупность новых сведений о каких-либо событиях, явлениях или предметах окружающего нас мира. Для передачи или хранения информации используют различные знаки (символы), позволяющие выразить (представить) её в некоторой форме. Этими знаками могут быть слова и фразы, жесты и рисунки, формы колебаний, математические знаки и т.п. Совокупность знаков, содержащих ту или иную информацию, называют сообщением.
При телеграфной передаче сообщением является текст телеграммы. При разговоре по телефону сообщением является непрерывное изменение во времени звукового давления, отображающее речь. При передаче движущихся изображений в телевизионных системах сообщение представляет собой изменение во времени яркости элементов изображения.
Передача сообщений, а, следовательно, и информации на расстояние осуществляется с помощью какого-либо математического носителя или физического процесса. Физический процесс, отображающий передаваемое сообщение, называется сигналом.
В качестве сигнала можно использовать любой физический процесс, изменяющийся в соответствии с переносимым сообщением. В современных системах управления и связи чаще всего используют электрические сигналы. Физической величиной, определяющей такой сигнал, является ток или напряжение. Можно передавать сигналы постоянным током на близкие расстояния по проводам. При передаче на большие расстояния по проводам и по радиоканалам используется модуляция.
Сигналы формируются путём изменения тех или иных параметров физического носителя по закону передаваемых сообщений. Этот процесс изменения параметров носителя называется модуляцией.
Сообщения могут быть функциями времени, (например, речь при передаче телефонных разговоров, спектакль при передаче по телевидению и т. п.). В других случаях сообщение не является функцией времени (например, текст телеграммы, неподвижное изображение и т.д.).
Сигнал является функцией времени, даже если сообщение таковым не является. Основными, с точки зрения передачи, являются следующие параметры сигнала: длительность сигнала Тс, его динамический диапазон Dс и ширина спектра Fc.
Длительность сигнала Тс – это параметр, определяющий интервал времени, в пределах которого сигнал существует.
Динамический диапазон – это отношение наибольшей мгновенной мощности сигнала к той наименьшей мощности, которую необходимо отличать от нуля при заданном качестве передачи. Он выражается обычно в децибелах.
Динамический диапазон речи диктора, например, равен 25… 30 дб, симфонического оркестра 70… 95 дб.
Ширина спектра сигнала Fс – это диапазон частот, в пределах которого сосредоточена его основная энергия.
При телефонной связи, чтобы речь была разборчива, достаточно передать сигнал в полосе от 300 Гц до 3400 Гц. Необходимая ширина спектра телевизионного сигнала определяется требуемой чёткостью изображения (верхняя частота сигнала 6,5 МГц).
Более общей и наглядной характеристикой является объём сигнала:
Чем больше объём сигнала, тем больше информации можно «вложить» в этот объём, и тем труднее передать такой сигнал по каналу связи.
Опираясь на эти понятия, можно теперь рассмотреть укрупнённую структурную схему системы электросвязи.
Для случая передачи дискретного (телеграфного сигнала) технология прохождения информации через элементы системы связи выглядит следующим образом:
Рассмотрим назначение отдельных элементов схемы. Источником сообщений и получателем в одних системах может быть человек, в других – различного рода устройства (автомат, ЭВМ и т. д.).
Устройство, преобразующее сообщение в сигнал, называется передающим устройством, а устройство, преобразующее принятый сигнал в сообщение – приёмным устройством.
С помощью преобразователя в передающем устройстве сообщение a, которое может иметь любую физическую природу (изображение, звуковое колебание и т. п.), преобразуется в первичный электрический сигнал в(t). В телефоне, например, эта операция сводится к превращению звукового давления в пропорционально изменяющийся электрический ток микрофона. А в телеграфии сначала производится кодирование, в результате которого последовательность элементов сообщения (букв) заменяется последовательностью кодовых символов (чаще 0 и 1), которая затем преобразуется в последовательность электрических импульсов постоянного тока.
Одной из основных задач кодирования является задача согласования алфавита, из которого построены дискретные сообщения с кодовым алфавитом выходных комбинаций. Например: в коде МТК 2 – 32 буквы русского алфавита представлены двоичными комбинациями длиной по 5 символов каждая. Такой код называется равномерным.
Кодирование позволяет также решить задачу устранения ненужной избыточности источника сообщений и тем самым повысить скорость передаваемой информации. Для этого используются неравномерные коды: обычно часто встречающиеся сообщения кодируются короткими кодовыми комбинациями, а редко встречающиеся – длинными (например: код Шеннона – Фано, код Хаффмена).
Коды могут использоваться также и для повышения достоверности передачи дискретной информации. Такие коды называются помехоустойчивыми.
В отличие от простых кодов у помехоустойчивых кодов не все возможные кодовые комбинации используются для передачи информации, часть из них является запрещённой, что позволяет обнаруживать и исправлять ошибки. Кроме того, для повышения достоверности при помехоустойчивом кодировании, наряду с информационными, передаются и проверочные символы.
Преобразователь сообщения в электрический сигнал
Процесс преобразования в общем случае осуществляется с помощью электрических и электромеханических устройств, которые воспринимают неэлектрические сообщения и выдают их в виде электрического процесса, т.е. изменяющегося во времени напряжения или тока. Это так называемое первичные преобразователи и их выходной сигнал является первичным электрическим сигналом b (t).
Передатчик. Первичные сигналы с преобразователя, как правило, не могут быть непосредственно переданы по линии передачи. Первичные сигналы низкочастотные, а в линии передачи эффективно передаются высокочастотные колебания. Для согласования первичных сигналов с линией передачи применяется устройство, называемое передатчиком, т.е. именно в нём осуществляется преобразование первичных сигналов b(t) в сигналы удобные для передачи по линии связи (по форме, мощности, частоте и т.д.).
В передатчике первичный сигнал b(t) (обычно низкочастотный) посредством модуляции превращается во вторичный (высокочастотный) сигнал u(t), пригодный для передачи по используемому каналу. В передатчике осуществляется модуляция.
Процесс модуляции заключается в управлении параметрами несущей первичным сигналом b(t). На выходе передатчика получаем модулированный сигнал u (t).
Например:
Преобразование сообщения в сигнал должно быть обратимым. В этом случае по выходному сигналу можно с помощью операции демодуляции и декодирования, восстановить входной первичный сигнал, т.е. получить всю информацию содержащуюся в переданном сообщении. В противном случае часть информации будет потеряна при передаче. Устройства, осуществляющие кодирование и декодирование, называются кодером и декодером, а устройства, осуществляющие модуляцию и демодуляцию – модулятором и демодулятором. Кодер и декодер объединяются в кодек. Модулятор и демодулятор в модем. В результате различных искажений и воздействия помех пришедший сигнал может существенно отличаться от переданного. Поэтому всегда можно высказать ряд предположений (гипотез) о том, какое сообщение передавалось. Задачей приёмного устройства является принятие решения о том, какое из возможных сообщений действительно передавалось источником. Для этого принятый сигнал подвергают анализу с учётом всех сведений об источнике (например, о вероятностях с которыми источник посылает то или иное сообщение), о применяемом коде и методе модуляции, а также о свойствах канала. В результате анализа обычно можно определить вероятности возможных гипотез и на основании этих вероятностей принять решение, которое и поступает к получателю. Та часть приёмного устройства, которая осуществляет анализ приходящего сигнала и принимает решение о переданном сообщении, называется решающей схемой.
Передача сигнала от источника к получателю осуществляется по линии связи.
Линией связи называется среда, используемая для передачи сигналов от передатчика к приёмнику. В системах проводной связи – это кабель, волновод или волокно, в системах радиосвязи – область пространства, в котором распространяются электромагнитные волны.
Теперь можно дать определение системы связи. Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи. По виду передаваемых сообщений различают следующие системы связи: передача речи (телефония); передача текста (телеграфия); телекс, телетекс; передача неподвижных изображений (фототелеграфия, факсимильные сообщения); передача изображений (телевидение); телеизмерение, телеуправление и передача данных. По значению телефонные и телевизионные системы делят на вещательные, отличающиеся высокой степенью художественности воспроизведения сообщений, и профессиональные, имеющие специальное применение (служебная связь, промышленное телевидение и т.п.).
В системе телеизмерения физическая величина, подлежащая измерению (температура, давление, скорость и т.п.), с помощью датчиков воздействует на передатчик, где она преобразовывается в сигнал и передаётся по каналу. На приёмном конце переданную физическую величину или её изменения выделяют из сигнала и наблюдают или регистрируют с помощью приборов.
В системе телеуправления осуществляется передача команд для автоматического выполнения определённых действий. Нередко эти команды формируют автоматически на основании результатов измерения, переданных телеметрической системой.
Системы передачи данных также могут иметь различное применение. В частности, они являются неотъемлемой частью телеметрических и телемеханических систем, автоматизированных систем управления (АСУ), компьютерных сетей.
Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В. Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Каналы связи характеризуются тремя параметрами временем передачи Тк, полосой пропускания Fк и динамическим диапазоном Дк.
Тк – время в течение которого ведётся передача.
Fк – диапазон частот пропускаемых каналом (АЧХ> 0,707).
Pп – мощность помехи.
Обобщённой характеристикой канала является его объём:
Необходимым условием неискажённой передачи по каналу сигналов с объёмом Vс, очевидно, д. б.
Преобразование первичного сигнала в высокочастотный сигнал и преследует цель согласования сигнала с каналом. В простейшем случае сигнал согласуют с каналом по всем трём параметрам, т.е. добиваются выполнения условий:
При этих условиях объём сигнала полностью «вписывается» в объём канала. Однако условие неискажённой передачи может выполняться и тогда, когда одно или два из вышеприведённых неравенств не выполнены. Это означает, что можно производить «обмен» длительности на ширину спектра или ширины спектра на динамический диапазон и т. д.
В реальном канале сигнал при передаче искажается, и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.
Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Искажения могут быть устранены соответствующим конструированием аппаратуры связи и коррекцией характеристик каналов.
Помехи имеют случайный характер, заранее неизвестны и поэтому не могут быть, как искажения, полностью устранены.
Помехой называется любое случайное воздействие на сигнал, которое ухудшает верность воспроизведения передаваемых сообщений. Помехи разнообразны как по своему происхождению, так и по физическим свойствам.
В проводных каналах связи основным видом помех являются:
импульсные шумы, часто связанные с автоматической коммутацией и перекрёстными наводками;
прерывания связи – явление, при котором сигнал в линии резко затухает или исчезает.
В радиоканалах основные виды помех:
атмосферные, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами;
индустриальные, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств;
помехи от посторонних радиостанций и каналов.
При радиосвязи в диапазоне ультракоротких волн сказываются:
внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в элементах аппаратуры;
космические помехи, связанные с электромагнитными процессами, происходящими на внеземных объектах.
В общем виде влияние помехи n (t) на передоваемый сигнал u (t) можно выразить оператором:
Когда оператор вырождается в сумму:
помеха называется аддитивной.
Если же оператор может быть представлен в виде произведения:
то помеху называют мультипликативной.
В реальных каналах обычно имеют место и аддитивные и мультипликативные помехи, поэтому:
Среди аддитивных помех различного происхождения особое место занимает флуктуационная помеха (флуктуационный шум), представляющая собой случайный процесс с нормальным распределением вероятностей (гауссовский процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах.
При оценке работы системы связи необходимо, прежде всего, учесть, какую точность передачи сообщения обеспечивает система и с какой скоростью передаётся информация. Первое определяет качество информации, второе – количество. В правильно спроектированной и технически исправной системе связи искажения сообщений обусловлены лишь воздействием помех. В этом случае качество передачи полностью определяется помехоустойчивостью системы.
Под помехоустойчивостью обычно понимают способность системы противостоять вредному влиянию помех на передачу сообщений. Так как действие помех проявляется в том, что принятое сообщение отличается от переданного, то количественно помехоустойчивость при заданной помехе можно характеризовать степенью соответствия принятого сообщения переданному. Эта величина называется верностью или достоверностью.
Если сообщение представляет собой дискретную последовательность элементов, влияние помехи на передачу такого сообщения проявляется в том, что вместо фактически переданного элемента может быть принят какой-либо другой, такое событие называется ошибкой. В этом случае в качестве количественной меры верности можно взять вероятность ошибки p или любую монотонную функцию этой вероятности.
При передаче непрерывных сообщений степенью соответствия принятого сообщения переданномуможет служить некоторая величина, представляющая собой «расстояние» междуи. Часто принимают критерий квадратичного отклонения:
Наряду с верностью важнейшим показателем работы системы связи является скорость передачи.
В системах передачи дискретных сообщений скорость измеряется числом передаваемых двоичных символов (импульсов) в единицу времени.
Максимальную скорость передачи R mах, допускаемую данной системой связи при условии, что канал не вносит ошибок и искажений, принято называть пропускной способностью системы. Пропускную способность системы передачи непрерывных сообщений оценивают количеством одновременно передаваемых телефонных разговоров, радиовещательных и телевизионных программ и т.п.
Пропускную способность системы R mах не следует, путать с пропускной способностью канала связи С. Она характеризует, максимальное количество информации, которое может быть передано по данному каналу в единицу времени.
Пропускная способность системы связи – понятие техническое, характеризующее используемую аппаратуру, а пропускная способность канала – это фундаментальное теоретическое понятие, определяющее потенциальные возможности системы связи использующей данный канал, если на сложность и стоимость аппаратуры не наложено никаких ограничений и к тому же допускается любая задержка переданных сообщений.
Под задержкой понимается максимальное время, прошедшее между моментом подачи сообщения от источника на вход передающего устройства и моментом выдачи восстановленного сообщения приёмным устройством. Задержка является одной из важных характеристик системы связи. Она зависит от характера и протяжённости канала связи, а также от длительности обработки сигнала в передающем и приёмном устройствах.
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)