3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
Определим потенциальную помехоустойчивость для двоичной системы с аддитивным белым шумом, когда при приёме точно известны оба ожидаемых сигнала: и, полагая, что априорные вероятности этих сигналов одинаковы. Приходящий сигналZ(t) является случайным, так как, во-первых, заранее неизвестна реализация передаваемого сигнала, во-вторых, он содержит случайную помеху N(t) .
(3.36)
При выполнении неравенства (3.36) оптимальный приёмник регистрирует символ 1, соответствующий сигналу , в противном случае – символ – 0, соответствующий сигналу. Если действительно передается символ 1, то. При этом вероятность ошибкиопределится вероятностью того, что неравенство (13.36) не выполнено. Заметимz(t) и E их значениями:
, (3.37)
которое приводится к следующему виду:
(3.38)
Аналогичное соотношение получится, если предположить, что передаётся символ 0.
Следовательно, в обоих случаях вероятности ошибки равны: и сформированный модемом двоичный дискретный канал симметричен.
Введём обозначения:
(3.39)
Тогда: (3.40)
Если N(t) – нормальный стационарный белый шум с нулевым средним и односторонней спектральной плотностью мощности , то– нормально распределённая величина, так как она определяется линейной операцией над нормальным же случайным процессом.
Учитывая выражение для функции корреляции белого шума и фильтрующее свойство – функции, можем получить дисперсию величины:
(3.41)
Тогда вероятность выполнения неравенства (13.40), то есть вероятность ошибки будет равна
(3.42)
где произведена замена переменнойи введено обозначение
(3.43)
Функция Ф– табулирована и называется функцией Крампа. Учитывая, чтоможно (3.42) записать в виде
(3.44)
Таким образом, при заданной интенсивности помехи , потенциальная помехоустойчивость двоичной системы зависит только от так называемой эквивалентной энергии сигналов.
Помехоустойчивость выше, (вероятность ошибки меньше), у той системы, у которой больше эквивалентная энергия используемых сигналов.
Эти важнейшие результаты получил академик В. А. Котельников.
Сравним различные виды манипуляции для двоичной системы.
АМн – амплитудная манипуляция
; ;
(3.45)
где, – отношение энергии сигнала на входе демодулятора к спектральной плотности флуктуационной помехи.
ЧМн – частотная манипуляция.
(3.46)
(3.46)
Максимально возможные значения иполучатся, если
ФМн – фазовая манипуляция
(3.47)
Из сравнения различных видов манипуляции видно, что при переходе от системы АМн к системе с ЧМн (с ортогональными сигналами) можно обеспечить неизменное качество связи (вероятность ошибки) при понижении средней мощности передатчика в 2 раза, то есть получить энергетический выигрыш в 2 раза (или на 3 дБ). При переходе же к системе с ФМн (с противоположными сигналами) получается энергетический выигрыш ещё в 2 раза – по сравнению с ЧМн и в 4 раза – по сравнению с АМн.
Если же сравнение вести не по пиковой, а по средней мощности, то переход от АМн к ЧМн не даёт энергетического выигрыша, поскольку при ЧМн средняя мощность равна максимальной, а при АМн – вдвое меньше максимальной (если ипередаются с одинаковой вероятностью).
Однако помехоустойчивость систем с ЧМн значительно выше по сравнению с АМн. Это объясняется не увеличением потенциальной помехоустойчивости, которая для обеих систем одинакова, а главным образом тем, что оптимальная решающая схема для ЧМн реализуется с довольно большой точностью, а при АМ этому препятствует невозможность обеспечить точное оптимальное значение ненулевого порогового уровня . Поэтому реальная помехоустойчивость при ЧМн близка к потенциальной, АМн значительно ниже её.
Система ФМн, как и другие системы с противоположенными сигналами, обеспечивает максимальную для двоичной системы потенциальную помехоустойчивость. Однако реализация демодулятора для когерентного приёма ФМн встречает определённые трудности. При построении демодулятора с активным фильтром возникает проблема поддержания равенства фаз опорного генератора приходящего сигнала. Если пытаться строить его на основе согласованного фильтра, то возникает ещё более трудная задача когерентного отсчёта.
Задача выделения опорного сигнала особенно затрудняется при ФМн, так как, если элементы передаются равновероятно, то спектр сигнала ФМн вообще не содержит составляющей на частоте.
Главным же недостатком ФМн является возможность перескока фазы опорного сигнала, вследствие чего даже при отсутствии аддитивной помехи в канале символы инвертируются (нули в 1,а 1 ). Возникает явление «обратной работы». Поэтому внедрение систем с ФМн долгое время реально было невозможным.
Эффективный метод устранения этого явления был найден путём перехода к относительным методам модуляции предложенным Н.Т. Петровичем в 1957 году. Они сводятся к модуляции информационного параметра передаваемой посылки элемента сигнала относительно того же параметра предшествующей посылки. При относительной фазовой манипуляции (ОФМн) сообщение содержится не в абсолютном значении фазы элемента сигнала, а в разности фаз двух соседних элементов, при этом символ 1 передаётся повторением этой реализации сигнала, которая имела место в качестве предыдущего элемента, а символ 0 – передачей реализации с обратной фазой, либо наоборот.
Сигналы ОФМн могут приниматься различными методами. Рассмотрим квазикогерентный приём сигналов ОФМн, называемый методом сравнения полярностей. Систему ОФМн можно рассматривать как обычную систему с ФМн, но со специальным перекодированием символов. Это означает, что оптимальный приём сигналов ОФМн, можно осуществить следующей схемой. Перекодирование выполняется сравнением полярностей напряжения на выходе интегратора для двух соседних элементов, для чего требуется задержка выходных символов в ячейке памяти (ЯП) на время Т.
Так как ОФМн – система с активной паузой, то пороговый уровень в демодуляторе – нулевой и решающее устройство превращается в дискриминатор полярности (ДП). Полярности соседних элементов сравниваются в схеме сравнения полярностей (ССП), которая представляет собой обычный перемножитель. Символ 1 регистрируется на выходе приёмника, например, при совпадении полярности двух соседних посылок; символ 0 – если эти полярности различны. При таком методе приёма перескок фазы опорного сигнала (при отсутствии помехи в канале) вызывает ошибку только в одном символе. Последующие же символы регистрируются правильно.
Определим вероятность ошибки в системе ОФМн при учёте флуктуационной помехи в канале при когерентном приёме. Вероятность Рофмнн ошибочной регистрации символов в системе ОФМн не совпадает с вероятностью появления ошибок на выходе фазового детектора или, что то же самое, с вероятностью ошибок в системе «классической» фазовой манипуляции, определяемой (3.47). Очевидно, что ошибочная регистрация символа ( при приёме методом сравнения полярностей) возможна в результате одного из двух несовместимых событий: а) знак данного элемента принят ошибочно, а предыдущего – верно; б) знак данного элемента принят верно, предыдущего – ошибочно. Каждое из этих событий имеет вероятность Рфмн (1 - Рфмн).
Таким образом: .
В нормальных условиях эксплуатации, когда требуется
(3.48)
Таким образом, «платой» за устранение обратной работы является удвоение вероятности ошибки, обусловленной шумом в канале.
Для недвоичных систем () нахождение вероятности ошибочного приёмав общем случае затрудняется, так как приходится анализировать совокупность из (m-1) неравенств. Однако для систем с активной паузой () при равновероятных ортогональных сигналах канал симметричен и можно оценить вероятностьпростым неравенством
, (3.49)
где – вероятность ошибки для двоичной системы в том же канале, если используется некоторая пара изm сигналов.
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)