6.6. Измерение характеристик случайных процессов
Если случайный процесс является эргодическим, то его реализация достаточной длины есть «типичный» представитель статистического ансамбля. Изучая эту реализацию экспериментально, можно получить много сведений, характеризующих данный случайный процесс.
Прибор для измерения одномерной плотности вероятности случайного процесса может быть выполнен следующим образом. Одномерная плотность вероятности эргодического случайного процесса есть величина пропорциональная относительному времени пребывания его реализации на уровне между x и . Предположим, что имеется устройство с двумя входами, на один из которых подаётся исследуемая реализацияx(t), а на другой опорное напряжение, уровень которого можно регулировать. На выходе устройства возникают прямоугольные видеоимпульсы постоянной амплитуды, начало и конец которых определяется моментами времени, когда текущие значения случайного сигнала совпадают либо с уровнем либо с уровнем. Если теперь измерить, скажем, с помощью обычного стрелочного прибора среднее значение тока, создаваемого последовательностью видеоимпульсов, то показания прибора будут пропорциональны плотности вероятности.
Любой достаточно инерционный стрелочный прибор может быть использован для измерения математического ожидания случайного процесса (смотри формулу 6.5).
Прибор, измеряющий дисперсию случайного процесса, как это следует из (6.6) , должен иметь на входе конденсатор, отделяющий постоянную составляющую. Дальнейшие этапы процесса измерения – возведение в квадрат и усреднение по времени – выполняются инерционным квадратичным вольтметром.
Принцип работы измерителя функции корреляции (коррелометра) вытекает из формулы (6.7). Здесь мгновенные значения случайного сигнала после фильтрации постоянной составляющей, разделяясь на два канала поступают на перемножитель, причём в одном из каналов сигнал задерживается на время . Для получения значения функции корреляции сигнал с выхода перемножителя обрабатывается инерционным звеном, которое осуществляет усреднение.
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)