7.3 Z-преобразование
При анализе и синтезе дискретных и цифровых устройств Z-преобразование играет такую же роль, как интегральные преобразования Фурье по отношению к непрерывным сигналам.
Пусть – числовая последовательность, конечная или бесконечная, содержащая отсчётные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицательным степеням комплексной переменнойZ:
(7.9)
Эта сумма называется Z-преобразованием последовательности . Свойства дискретных последовательностей чисел можно изучать, исследуя ихZ-преобразования обычными методами математического анализа.
На основании формулы (7.9) можно непосредственно найти Z-преобразования сигналов с конечным числом отсчётов. Так простейшему дискретному сигналу с единственным отсчётом соответствуетЕсли же, например,, то
Рассмотрим случай, когда в ряде (7.9) число слагаемых бесконечно велико.
Возьмём дискретный сигнал образованный одинаковыми единичными отсчётами и служащий моделью обычной функции включения. Бесконечный рядявляется суммой геометрической прогрессии и сходится при любыхZ, |Z|>1. Суммируя прогрессию, получаем
Аналогично получается Z-преобразование бесконечного дискретного сигнала , где а-некоторое вещественное число. Здесь
Данное выражение имеет смысл при |Z|>a
Пусть x(z) – функция комплексной переменной Z. Замечательное свойство Z-преобразование состоит в том, что функция x(z) определяет всю бесконечную совокупность отсчётов ().
Действительно, умножим обе части ряда (7.9) на множитель :
(7.10)
а затем вычислим интегралы от обеих частей полученного равенства, взяв в качестве контура интегрирования произвольную замкнутую кривую, При этом воспользуемся фундаментальным положением из теоремы Коши:
Интегралы от всех слагаемых правой части обратятся в нуль, за исключением слагаемого с номером m, поэтому:
(7.11)
Данное выражение носит название обратное Z-преобразование.
Важнейшие свойства Z-преобразования:
1. Линейность. Если и- некоторые дискретные сигналы, причём известны соответствующиеZ-преобразования x(z) и y(z), то сигналу будет отвечать преобразованиепри любых постоянныхи. Доказательство проводится путём подстановки суммы в формулу (7.9).
2. Z-преобразование смещённого сигнала. Рассмотрим дискретный сигнал , получающийся из дискретного сигналапутём сдвига на одну позицию в сторону запаздывания, т.е. когда. Непосредственно вычисляяZ-преобразование, получаем следующий результат:
(7.12)
Таким образом, символ служит оператором единичной задержки (на один интервал дискретизации) вZ-области.
3. Z-преобразование свёртки. Пусть x(z) и y(z) – непрерывные сигналы, для которых определена свёртка:
(7.13)
Применительно к дискретным сигналам по аналогии с (7.13) принято вводить дискретную свёртку – последовательность чисел общий член которой:
(7.14)
Подобную дискретную свёртку называют линейной
Вычислим Z-преобразование дискретной свёртки:
(7.15)
Итак свёртке двух дискретных сигналов отвечает произведение Z-преобразований.
Часть
- Системы электрической связи. Общие сведения о системах электросвязи. Основные понятия и определения
- Часть 1
- Раздел 1. Элементы общей теории сигналов
- 1.1 Классификация сигналов
- 1.2. Некоторые элементы функционального анализа сигналов
- 1.3 Основы теории ортогональных сигналов
- Раздел 2. Спектральные представления сигналов
- 2.1. Понятие о спектре периодических и непериодических сигналов
- 2.2 Спектральное представление периодических сигналов
- 2.3 Спектральное представление непериодических сигналов
- 2.4 Теоремы о спектрах
- 2.5 Спектральные представления сигналов с использованием негармонических функций
- Раздел 3. Сигналы с ограниченным спектром
- 3.1. Некоторые математические модели сигналов с ограниченным спектром
- 3.2 Теорема Котельникова
- 3.3. Узкополосные сигналы
- 3.4. Аналитический сигнал и преобразования Гильберта
- Раздел 4. Основы корреляционного анализа сигналов
- 4.1. Взаимная спектральная плотность сигналов. Энергетический спектр
- 4.2. Автокорреляционная функция сигналов
- 4.3. Акф дискретного сигнала
- 4.4. Взаимокорреляционная функция двух сигналов
- Раздел 5. Модулированные сигналы
- 5.1. Сигналы с амплитудной модуляцией
- 5.2 Сигналы с угловой модуляцией
- 5.3. Дискретные формы угловой модуляции
- 5.4 Сигналы с импульсной модуляцией
- Раздел 6. Основы теории случайных процессов
- 6.1. Случайные процессы. Основные понятия и определения
- 6.2. Характеристики случайных процессов
- 6.3. Моментные функции случайных процессов
- 6.4. Свойства случайных процессов
- 6.5. Функция корреляции двух случайных процессов
- 6.6. Измерение характеристик случайных процессов
- 6.7. Спектральное представление стационарных случайных процессов. Теорема Винера-Хинчина
- 6.8 Типовые модели случайных сигналов
- 6.9 Узкополосные случайные сигналы
- Раздел 7. Основные элементы цифровой обработки сигналов
- 7.1. Дискретное преобразование Фурье
- 7.2. Быстрое преобразование Фурье
- 7.3 Z-преобразование
- Раздел 1.Каналы электросвязи
- Тема1.1 Общие сведения о каналах электросвязи и их классификация
- 1.2 Математические модели каналов электросвязи
- 1.2.1 Математические модели непрерывных каналов связи
- 1.2.2 Математические модели дискретных каналов связи
- Раздел 2 Основные положения теории передачи информации
- 2.1 Информационные параметры сообщений и сигналов
- 2.2 Взаимная информация
- Эффективное кодирование дискретных сообщений
- Тема 2.4. Информация в непрерывных сигналах
- Тема 2.5. Пропускная способность канала связи
- Тема 2.6. Теорема к. Шеннона
- Тема 2.7. Информация в непрерывных сообщениях. Эпсилон-энтропия
- Раздел 3. Оптимальный приём дискретных сообщений
- Тема 3.1. Постановка задачи оптимального приёма дискретных сообщений как статистической задачи. Понятие помехоустойчивости
- 3.2. Элементы теории решений
- 3.3. Критерии качества оптимального приёмника
- 3.4 Алгоритм оптимального приёма при полностью известных сигналах. Когерентный приём
- 3.5 Структурное построение оптимального приёмника
- 3.6 Реализация алгоритма оптимального приёма на основе согласованных фильтров. Свойства согласованного фильтра
- 3.8 Потенциальная помехоустойчивость систем с различными видами манипуляции
- 3.9 Приём сигналов с неопределённой фазой (некогерентный приём)